Parameter estimation in Markov random field contextual models using geometric models of objects

被引:12
作者
Nadabar, SG [1 ]
Jain, AK [1 ]
机构
[1] MICHIGAN STATE UNIV,DEPT COMP SCI,E LANSING,MI 48824
基金
美国国家科学基金会;
关键词
Markov random fields; line process; clique potentials; parameter estimation; edge detection; CAD models; range mage;
D O I
10.1109/34.485560
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new scheme for the estimation of Markov random field line process parameters which uses geometric CAD models of the objects in the scene. the models:are used to generate synthetic images of the objects from random viewpoints. the edge maps computed from the synthesized images are used as training samples to estimate the line process parameters using a least squares method. We show that this parameter estimation method is useful for detecting edges in range as well as intensity edges. The main contributions of the paper are: i) use of CAD models to obtain true edge labels which are otherwise not available, and ii) use of canonical MRF representation ttl reduce the number-of parameters.
引用
收藏
页码:326 / 329
页数:4
相关论文
共 50 条
[31]   Iterative source-channel decoding with Markov random field source models [J].
Kliewer, Jorg ;
Goertz, Norbert ;
Mertins, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (10) :3688-3701
[32]   MARKOV RANDOM-FIELD MODELS FOR UNSUPERVISED SEGMENTATION OF TEXTURED COLOR IMAGES [J].
PANJWANI, DK ;
HEALEY, G .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (10) :939-954
[33]   Parameter estimation in Markov random field image modeling with imperfect observations.: A comparative study [J].
Ibáñez, MV ;
Simó, A .
PATTERN RECOGNITION LETTERS, 2003, 24 (14) :2377-2389
[34]   Improving Parametric PCA Using KL-divergence Between Gaussian-Markov Random Field Models [J].
Levada, Alexandre L. M. .
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT II, 2021, 12950 :55-69
[35]   Parameter estimation using macroscopic diffusion MRI signal models [J].
Hang Tuan Nguyen ;
Grebenkov, Denis ;
Dang Van Nguyen ;
Poupon, Cyril ;
Le Bihan, Denis ;
Li, Jing-Rebecca .
PHYSICS IN MEDICINE AND BIOLOGY, 2015, 60 (08) :3389-3413
[36]   Parameter estimation of generalized backscatter models using entropy maximization [J].
Smolíková, R ;
Wachowiak, MP ;
Zurada, JM .
MEDICAL IMAGING 2003: ULTRASONIC IMAGING AND SIGNAL PROCESSING, 2003, 5035 :480-490
[37]   Using metaheuristic algorithms for parameter estimation in generalized Mallows models [J].
Aledo, Juan A. ;
Gamez, Jose A. ;
Molina, David .
APPLIED SOFT COMPUTING, 2016, 38 :308-320
[38]   MULTIPLICATIVE NOISE MODELS - PARAMETER-ESTIMATION USING CUMULANTS [J].
SWAMI, A .
SIGNAL PROCESSING, 1994, 36 (03) :355-373
[39]   Parameter estimation in thermalhydraulic models using the multidirectional search method [J].
Carlos, S ;
Ginestar, D ;
Martorell, S ;
Serradell, V .
ANNALS OF NUCLEAR ENERGY, 2003, 30 (02) :133-158
[40]   Fully Bayesian Binary Markov Random Field Models: Prior Specification and Posterior Simulation [J].
Arnesen, Petter ;
Tjelmeland, Hakon .
SCANDINAVIAN JOURNAL OF STATISTICS, 2015, 42 (04) :967-987