Parameter estimation in Markov random field contextual models using geometric models of objects

被引:12
|
作者
Nadabar, SG [1 ]
Jain, AK [1 ]
机构
[1] MICHIGAN STATE UNIV,DEPT COMP SCI,E LANSING,MI 48824
基金
美国国家科学基金会;
关键词
Markov random fields; line process; clique potentials; parameter estimation; edge detection; CAD models; range mage;
D O I
10.1109/34.485560
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a new scheme for the estimation of Markov random field line process parameters which uses geometric CAD models of the objects in the scene. the models:are used to generate synthetic images of the objects from random viewpoints. the edge maps computed from the synthesized images are used as training samples to estimate the line process parameters using a least squares method. We show that this parameter estimation method is useful for detecting edges in range as well as intensity edges. The main contributions of the paper are: i) use of CAD models to obtain true edge labels which are otherwise not available, and ii) use of canonical MRF representation ttl reduce the number-of parameters.
引用
收藏
页码:326 / 329
页数:4
相关论文
共 50 条
  • [1] Parameter estimation in Markov random field contextual models using geometric models of objects
    Innovision Corp, Madison, United States
    IEEE Trans Pattern Anal Mach Intell, 3 (326-329):
  • [2] Edge detection using Markov random field models - Optimization and parameter estimation by mean field annealing
    Kudo, H
    Saito, T
    Kawauchi, M
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 1995, 78 (07): : 21 - 33
  • [3] Smoothing parameter estimation framework for Markov random field by using contextual and spectral information
    Aghighi, Hossein
    Trinder, John
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XIX, 2013, 8892
  • [4] Distribution estimation of hyperparameters in Markov random field models
    Nakanishi-Ohno, Yoshinori
    Nagata, Kenji
    Shouno, Hayaru
    Okada, Masato
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (04)
  • [5] Theory of Distribution Estimation of Hyperparameters in Markov Random Field Models
    Sakamoto, Hirotaka
    Nakanishi-Ohno, Yoshinori
    Okada, Masato
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2016, 85 (06)
  • [6] Pattern recognition using Markov random field models
    Cai, JH
    Liu, ZQ
    PATTERN RECOGNITION, 2002, 35 (03) : 725 - 733
  • [7] Distributed estimation and detection for sensor networks using hidden Markov random field models
    Dogandzic, Aleksandar
    Zhang, Benhong
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (08) : 3200 - 3215
  • [8] MARKOV RANDOM FIELD TEXTURE MODELS
    CROSS, GR
    JAIN, AK
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1983, 5 (01) : 25 - 39
  • [9] Fusion of hidden Markov random field models and its Bayesian estimation
    Destrempes, Francois
    Angers, Jean-Francois
    Mignotte, Max
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (10) : 2920 - 2935
  • [10] Texture classification using multiresolution Markov random field models
    Wang, L
    Liu, J
    PATTERN RECOGNITION LETTERS, 1999, 20 (02) : 171 - 182