Existence and uniqueness of solution for quasi-equilibrium problems and fixed point problems on complete metric spaces with applications

被引:1
作者
Chuang, Chih-Sheng [1 ,2 ]
Lin, Lai-Jiu [1 ]
机构
[1] Natl Changhua Univ Educ, Dept Math, Changhua 50058, Taiwan
[2] Natl Cheng Kung Univ, Dept Math, Tainan 701, Taiwan
关键词
Equilibrium problem; Fixed point; Minimax theorem; Nonlinear mappings; Banach limit; Mean; OPTIMIZATION PROBLEMS; EKELANDS PRINCIPLE; THEOREMS; MAPPINGS;
D O I
10.1007/s10898-012-9976-2
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we presented new and important existence theorems of solution for quasi-equilibrium problems, and we show the uniqueness of its solution which is also a fixed point of some mapping. We also show that this unique solution can be obtained by Picard's iteration method. We also get new minimax theorem, and existence theorems for common solution of fixed point and optimization problem on complete metric spaces. Our results are different from any existence theorems for quasi-equilibrium problems and minimax theorems in the literatures.
引用
收藏
页码:829 / 841
页数:13
相关论文
共 31 条
[1]   Existence of a solution and variational principles for vector equilibrium problems [J].
Ansari, QH ;
Konnov, IV ;
Yao, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2001, 110 (03) :481-492
[2]   Ekeland's principle for vector equilibrium problems [J].
Bianchi, M. ;
Kassay, G. ;
Pini, R. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (07) :1454-1464
[3]   Existence of equilibria via Ekeland's principle [J].
Bianchi, M ;
Kassay, G ;
Pini, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 305 (02) :502-512
[4]  
Blum E., 1994, Math. Stud., V63, P127
[5]  
Capata A, 2011, TAIWAN J MATH, V15, P365
[6]   Some characterizations of ideal points in vector optimization problems [J].
Chai, Yan-Fei ;
Cho, Yeol Je ;
Li, Jun .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2008,
[7]   Multiobjective optimization problems with modified objective functions and cone constraints and applications [J].
Chen, Jia Wei ;
Cho, Yeol Je ;
Kim, Jong Kyu ;
Li, Jun .
JOURNAL OF GLOBAL OPTIMIZATION, 2011, 49 (01) :137-147
[8]  
Cho YJ, 2010, FIXED POINT THEOR-RO, V11, P237
[9]  
Chuang C.S., J GLOB OPTIM UNPUB
[10]  
Chuang CS, 2012, J NONLINEAR CONVEX A, V13, P515