A Lagrangian staggered grid Godunov-like approach for hydrodynamics

被引:50
|
作者
Morgan, Nathaniel R. [1 ]
Lipnikov, Konstantin N. [2 ]
Burton, Donald E. [1 ]
Kenamond, Mark A. [1 ]
机构
[1] Los Alamos Natl Lab, X Computat Phys Div, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM USA
关键词
Lagrangian; Hydrodynamics; Staggered grid; Viscosity; Godunov; Finite-volume; Riemann; ARTIFICIAL VISCOSITY; RIEMANN SOLVER; ENERGY; CONSERVATION; COMPRESSION; SCHEME; ERRORS;
D O I
10.1016/j.jcp.2013.12.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Much research in Lagrangian staggered-grid hydrodynamics (SGH) has focused on explicit viscosity models for adding dissipation to a calculation that has shocks. The explicit viscosity is commonly called "artificial viscosity". Recently, researchers have developed hydrodynamic algorithms that incorporate approximate Riemann solutions on the dual grid [23,29,35,30,2,3]. This approach adds dissipation to the calculation via solving a Riemann-like problem. In this work, we follow the works of [28,2935,30] and solve a multidirectional Riemann-like problem at the cell center. The Riemann-like solution at the cell center is used in the momentum and energy equations. The multidirectional Riemann-like problem used in this work differs from previous work in that it is an extension of the cell-centered hydrodynamics (CCH) nodal solution approach in [7]. Incorporating the multidirectional Riemann-like problem from [7] into SGH has merits such as the ability to resist mesh instabilities like hourglass null modes and chevron null modes. The approach is valid for complex multidimensional flows with strong shocks. Numerical details and test problems are presented. (C) 2013 The Authors. Published by Elsevier Inc. All rights reserved.
引用
收藏
页码:568 / 597
页数:30
相关论文
共 50 条
  • [1] A Godunov-like point-centered essentially Lagrangian hydrodynamic approach
    Morgan, Nathaniel R.
    Waltz, Jacob I.
    Burton, Donald E.
    Charest, Marc R.
    Canfield, Thomas R.
    Wohlbier, John G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 614 - 652
  • [2] Staggered mesh Godunov (SMG) schemes for Lagrangian hydrodynamics
    Luttwak, Gabi
    Falcovitz, Joseph
    SHOCK COMPRESSION OF CONDENSED MATTER - 2005, PTS 1 AND 2, 2006, 845 : 339 - 342
  • [3] A cell-centered Lagrangian Godunov-like method for solid dynamics
    Burton, D. E.
    Carney, T. C.
    Morgan, N. R.
    Sambasivan, S. K.
    Shashkov, M. J.
    COMPUTERS & FLUIDS, 2013, 83 : 33 - 47
  • [4] A dissipation model for staggered grid Lagrangian hydrodynamics
    Morgan, Nathaniel R.
    COMPUTERS & FLUIDS, 2013, 83 : 48 - 57
  • [5] A Godunov-type tensor artificial viscosity for staggered Lagrangian hydrodynamics
    Xu, Chunyuan
    Zeng, Qinghong
    Cheng, Juan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 426
  • [6] Volume consistency in a staggered grid Lagrangian hydrodynamics scheme
    Loubere, R.
    Shashkov, M.
    Wendroff, B.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (08) : 3731 - 3737
  • [7] STAGGERED GRID RESIDUAL DISTRIBUTION SCHEME FOR LAGRANGIAN HYDRODYNAMICS
    Abgrall, Remi
    Tokareva, Svetlana
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (05): : A2317 - A2344
  • [8] Numerical viscosity control in Godunov-like smoothed particle hydrodynamics for realistic flows modeling
    Parshikov, A. N.
    Medin, S. A.
    Rublev, G. D.
    Dyachkov, S. A.
    PHYSICS OF FLUIDS, 2024, 36 (01)
  • [9] MULTIDIMENSIONAL STAGGERED GRID RESIDUAL DISTRIBUTION SCHEME FOR LAGRANGIAN HYDRODYNAMICS
    Abgrall, Remi
    Lipnikov, Konstantin
    Morgan, Nathaniel
    Tokareva, Svetlana
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2020, 42 (01): : A343 - A370
  • [10] Godunov-Like Numerical Fluxes for Conservation Laws on Networks
    Lukáš Vacek
    Václav Kučera
    Journal of Scientific Computing, 2023, 97