Efficient evaluation of queries with mining predicates

被引:8
作者
Chaudhuri, S [1 ]
Narasayya, V [1 ]
Sarawagi, S [1 ]
机构
[1] Microsoft Corp, Redmond, WA 98052 USA
来源
18TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS | 2002年
关键词
D O I
10.1109/ICDE.2002.994772
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Modern relational database systems are beginning to support ad hoc queries on mining models. In this paper, we explore novel techniques for optimizing queries that apply mining models to relational data. For such queries, we use the internal structure of the mining model to automatically derive traditional database predicates. We present algorithms for deriving such predicates for some popular discrete mining models: derision trees, naive Bayes, and clustering. Our experiments on Microsoft SQL Server 2000 demonstrate that these derived predicates can significantly reduce the cost of evaluating such queries.
引用
收藏
页码:529 / 540
页数:12
相关论文
共 32 条
[1]  
AGRAWAL R, 1992, PROC INT CONF VERY L, P560
[2]  
AGRAWAL R, 1998, P ACM SIGMOD INT C M
[3]  
AGRAWAL S, 2000, INDEX TUNING WIZARD
[4]  
[Anonymous], 1996, P AAAI INT C KNOWL D
[5]  
BAY SD, 1999, UCI KDD ARCH
[6]   AN ALGORITHM FOR POINT CLUSTERING AND GRID GENERATION [J].
BERGER, M ;
RIGOUTSOS, I .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1991, 21 (05) :1278-1286
[7]  
Blake C.L., 1998, UCI repository of machine learning databases
[8]  
Chaudhuri S., 1994, Proceedings of the Thirteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. PODS 1994, P86, DOI 10.1145/182591.182602
[9]  
CHAUDHURI S, 1997, ACM SIGMOD RECOR MAR
[10]  
CHAUDHURI S, 1998, B TECHNICAL COMMITTE, V21