Statistical mechanics of a discrete Schrodinger equation with saturable nonlinearity

被引:11
作者
Samuelsen, Mogens R. [1 ]
Khare, Avinash [2 ]
Saxena, Avadh [3 ,4 ]
Rasmussen, Kim O. [3 ,4 ]
机构
[1] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
[2] IISER, Pune 411021, Maharashtra, India
[3] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 04期
关键词
BREATHERS; SOLITONS;
D O I
10.1103/PhysRevE.87.044901
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the statistical mechanics of the one-dimensional discrete nonlinear Schrodinger (DNLS) equation with saturable nonlinearity. Our study represents an extension of earlier work [Phys. Rev. Lett. 84, 3740 ( 2000)] regarding the statistical mechanics of the one-dimensional DNLS equation with a cubic nonlinearity. As in this earlier study, we identify the spontaneous creation of localized excitations with a discontinuity in the partition function. The fact that this phenomenon is retained in the saturable DNLS is nontrivial, since in contrast to the cubic DNLS whose nonlinear character is enhanced as the excitation amplitude increases, the saturable DNLS, in fact, becomes increasingly linear as the excitation amplitude increases. We explore the nonlinear dynamics of this phenomenon by direct numerical simulations. DOI: 10.1103/PhysRevE.87.044901
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Vortex pairs in the discrete nonlinear Schrodinger equation
    Bramburger, J. J.
    Cuevas-Maraver, J.
    Kevrekidis, P. G.
    [J]. NONLINEARITY, 2020, 33 (05) : 2159 - 2180
  • [22] The analytical study of solitons to the nonlinear Schrodinger equation with resonant nonlinearity
    Ekici, Mehmet
    Zhou, Qin
    Sonmezoglu, Abdullah
    Manafian, Jalil
    Mirzazadeh, Mohammad
    [J]. OPTIK, 2017, 130 : 378 - 382
  • [23] Ground state solutions for periodic discrete nonlinear Schrodinger equations with saturable nonlinearities
    Zhang, Luyu
    Ma, Shiwang
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2018,
  • [24] Discrete solitons in nonlinear Schrodinger lattices with a power-law nonlinearity
    Cuevas, J.
    Kevrekidis, P. G.
    Frantzeskakis, D. J.
    Malomed, B. A.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (01) : 67 - 76
  • [25] Multidimensional discrete compactons in nonlinear Schrodinger lattices with strong nonlinearity management
    D'Ambroise, J.
    Salerno, M.
    Kevrekidis, P. G.
    Abdullaev, F. Kh
    [J]. PHYSICAL REVIEW A, 2015, 92 (05):
  • [26] Vortex Solutions of the Defocusing Discrete Nonlinear Schrodinger Equation
    Cuevas, J.
    James, G.
    Kevrekidis, P. G.
    Law, K. J. H.
    [J]. NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 135 - +
  • [27] Soliton solutions of the nonlinear Schrodinger equation with the dual power law nonlinearity and resonant nonlinear Schrodinger equation and their modulation instability analysis
    Ali, Asghar
    Seadawy, Aly R.
    Lu, Dianchen
    [J]. OPTIK, 2017, 145 : 79 - 88
  • [28] Propagations of Fresnel diffraction accelerating beam in Schrodinger equation with nonlocal nonlinearity*
    Zhang, Yagang
    Pei, Yuheng
    Yuan, Yibo
    Wen, Feng
    Gu, Yuzong
    Wu, Zhenkun
    [J]. CHINESE PHYSICS B, 2021, 30 (11)
  • [29] Solitary waves in the nonlinear Schrodinger equation with spatially modulated Bessel nonlinearity
    Zhong, Wei-Ping
    Belic, Milivoj R.
    Huang, Tingwen
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2013, 30 (05) : 1276 - 1283
  • [30] Modulation instability in fractional Schrodinger equation with cubic-quintic nonlinearity
    Zhang, Jinggui
    [J]. JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2022, 31 (04)