Arithmetic Progressions in the Graphs of Slightly Curved Sequences

被引:0
|
作者
Saito, Kota [1 ]
Yoshida, Yuuya [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648602, Japan
关键词
arithmetic progression; Szemerodi's theorem; Piatetski-Shapiro sequence; van der Waerden number; Cowers' upper bound; THEOREM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A strictly increasing sequence of positive integers is called a slightly curved sequence with small error if the sequence can be well-approximated by a function whose second derivative goes to zero faster than or equal to 1/x(alpha) for some alpha > 0. In this paper, we prove that arbitrarily long arithmetic progressions are contained in the graph of a slightly curved sequence with small error. Furthermore, we extend Szemeredi's theorem to a theorem about slightly curved sequences. As a corollary, it follows that the graph of the sequence {Left perpendicularn(alpha)Right perpendicular }(n is an element of A) contains arbitrarily long arithmetic progressions for every 1 <= a < 2 and every A subset of N with positive upper density. Using this corollary, we show that the set {Left perpendicular Left perpendicular p(1/b) (alpha)Right perpendicular(a)Right perpendicular vertical bar p prime } contains arbitrarily long arithmetic progressions for every 1 <= a < 2 and b > 1. We also prove that, for every a >= 2, the graph of { Left perpendicularn(alpha)Right perpendicular }(n)(infinity)(=1) does not contain any arithmetic progressions of length 3.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] On classification of sequences containing arbitrarily long arithmetic progressions
    Celik, Sermin Cam
    Eyidogan, Sadik
    Goral, Haydar
    Sertbas, Doga Can
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (08) : 1917 - 1952
  • [2] Distinct distances and arithmetic progressions
    Dumitrescu, Adrian
    DISCRETE APPLIED MATHEMATICS, 2019, 256 : 38 - 41
  • [3] Powerful arithmetic progressions
    Hajdu, L.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (04): : 547 - 561
  • [4] Arithmetic progressions in sumsets
    B. Green
    Geometric & Functional Analysis GAFA, 2002, 12 : 584 - 597
  • [5] Powers in arithmetic progressions
    Lajos Hajdu
    Szabolcs Tengely
    The Ramanujan Journal, 2021, 55 : 965 - 986
  • [6] Rainbow arithmetic progressions
    Butler, Steve
    Erickson, Craig
    Hogben, Leslie
    Hogenson, Kirsten
    Kramer, Lucas
    Kramer, Richard L.
    Lin, Jephian Chin-Hung
    Martin, Ryan R.
    Stolee, Derrick
    Warnberg, Nathan
    Young, Michael
    JOURNAL OF COMBINATORICS, 2016, 7 (04) : 595 - 626
  • [7] Arithmetic progressions in sumsets
    Green, B
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (03) : 584 - 597
  • [8] Powers in arithmetic progressions
    Hajdu, Lajos
    Tengely, Szabolcs
    RAMANUJAN JOURNAL, 2021, 55 (03) : 965 - 986
  • [9] On the maximal length of two sequences of integers in arithmetic progressions with the same prime divisors
    Balasubramanian, R
    Langevin, M
    Shorey, TN
    Waldschmidt, M
    MONATSHEFTE FUR MATHEMATIK, 1996, 121 (04): : 295 - 307
  • [10] Piatetski-Shapiro primes in arithmetic progressions
    Guo, Victor Zhenyu
    Li, Jinjiang
    Zhang, Min
    RAMANUJAN JOURNAL, 2023, 60 (03) : 677 - 692