Thermal balance of tungsten monocrystalline nanoparticles in high pressure magnetron discharges

被引:9
作者
Arnas, C. [1 ]
Chami, A. [1 ]
Couedel, L. [1 ,2 ]
Acsente, T. [3 ]
Cabie, M. [4 ]
Neisius, T. [4 ]
机构
[1] Aix Marseille Univ, CNRS, PIIM, F-13397 Marseille, France
[2] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada
[3] Natl Inst Laser Plasma & Radiat Phys, Magurele 077125, Romania
[4] Aix Marseille Univ, Cent Marseille, CNRS, FSCM,CP2M, F-13397 Marseille, France
关键词
PHASE-TRANSFORMATION; DUST PARTICLES; SPUTTER-DEPOSITION; OPTICAL-PROPERTIES; THIN-FILMS; RADIOFREQUENCY; TRANSPORT; PLASMA; SHAPE;
D O I
10.1063/1.5095932
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Nanoparticles are produced in sputtering magnetron discharges operating with a tungsten cathode at an argon pressure of 30 Pa. Structure analyses show that they are of core-shell type. The core is a monocrystal mainly in the metastable beta-tungsten phase, and the shell is made of tungsten oxide. The origin of the metastable phase is attributed to the presence of residual oxygen in the device. Since this phase transforms into the stable alpha-tungsten phase by annealing, a standard model on the thermal balance of nanoparticles was used to find the temperature that they can reach under the considered experimental conditions. It is shown that this temperature is significantly higher than the gas one but not high enough to transform the monocrystalline metastable beta-phase during the plasma process.
引用
收藏
页数:8
相关论文
共 52 条
[1]   Tungsten nanoparticles with controlled shape and crystallinity obtained by magnetron sputtering and gas aggregation [J].
Acsente, T. ;
Negrea, R. F. ;
Nistor, L. C. ;
Matei, E. ;
Grisolia, C. ;
Birjega, R. ;
Dinescu, G. .
MATERIALS LETTERS, 2017, 200 :121-124
[2]   Synthesis of flower-like tungsten nanoparticles by magnetron sputtering combined with gas aggregation [J].
Acsente, Tomy ;
Negrea, Raluca Florentina ;
Nistor, Leona Cristina ;
Logofatu, Constantin ;
Matei, Elena ;
Birjega, Ruxandra ;
Grisolia, Christian ;
Dinescu, Gheorghe .
EUROPEAN PHYSICAL JOURNAL D, 2015, 69 (06)
[3]   Numerical Modeling of an RF Argon-Silane Plasma with Dust Particle Nucleation and Growth [J].
Agarwal, Pulkit ;
Girshick, Steven L. .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2014, 34 (03) :489-503
[4]   Thermal balance of carbon nanoparticles in sputtering discharges [J].
Arnas, C. ;
Mouberi, A. A. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (06)
[5]   In-situ characterisation of the dynamics of a growing dust particle cloud in a direct-current argon glow discharge [J].
Barbosa, S. ;
Couedel, L. ;
Arnas, C. ;
Kumar, K. Kishor ;
Pardanaud, C. ;
Onofri, F. R. A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (04)
[6]   TRANSPORT OF DUST PARTICLES IN GLOW-DISCHARGE PLASMAS [J].
BARNES, MS ;
KELLER, JH ;
FORSTER, JC ;
ONEILL, JA ;
COULTAS, DK .
PHYSICAL REVIEW LETTERS, 1992, 68 (03) :313-316
[7]   PdPt catalyst synthesized using a gas aggregation source and magnetron sputtering for fuel cell electrodes [J].
Caillard, A. ;
Cuynet, S. ;
Lecas, T. ;
Andreazza, P. ;
Mikikian, M. ;
Thomann, A-L ;
Brault, P. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2015, 48 (47)
[8]   Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications [J].
Chaudhuri, Rajib Ghosh ;
Paria, Santanu .
CHEMICAL REVIEWS, 2012, 112 (04) :2373-2433
[10]   Characterisation of a High-pressure Direct-current Magnetron Discharge Used for Tungsten Nanoparticle Production [J].
Couedel, L. ;
Arnas, C. ;
Acsente, T. ;
Chami, A. .
DIVERSE WORLD OF DUSTY PLASMAS, 2018, 1925