Devolatilization behaviour and pyrolysis kinetic modelling of Spanish biomass fuels

被引:20
作者
Granada, E. [1 ]
Eguia, P. [1 ]
Comesana, J. A. [1 ]
Patino, D. [1 ]
Porteiro, J. [1 ]
Miguez, J. L. [1 ]
机构
[1] Univ Vigo, ETS Ingenieros Ind, Vigo 36200, Pontevedra, Spain
关键词
Biomass; Thermogravimetric analysis; Pyrolysis; THERMOGRAVIMETRIC ANALYSIS; PARTICLE-SIZE; GASIFICATION; CELLULOSE; OLIVE; HEMICELLULOSE; UNCERTAINTY; LIGNITE; BLENDS;
D O I
10.1007/s10973-012-2747-y
中图分类号
O414.1 [热力学];
学科分类号
摘要
The basic pyrolysis behaviour of eight different biomass fuels has been tested in a thermogravimetric analyser under dynamic conditions (5, 20 and 50 A degrees C min(-1) heating rates) from room temperature up to 1,000 A degrees C. Their decomposition was successfully modelled by three first-order independent parallel reactions, describing the degradation of hemicellulose, cellulose and lignin. Hemicellulose would be the easiest one to pyrolyse, while lignin would be the most difficult one. Experimental and calculated results show good agreement. The reactivity of the different biomass type functions of various thermal, kinetic and composition parameters are discussed. The effect of the heating rate on pyrolysis behaviour was studied, and a comparison between slow and fast heating rate reveals a small displacement of the DTG profiles to higher temperatures. The heating rate not only affects the highest mass loss rate temperature but also influences the mass loss rate value.
引用
收藏
页码:569 / 578
页数:10
相关论文
共 42 条
[1]   Non-isothermal kinetic studies on co-processing of olive residue and polypropylene [J].
Aboulkas, A. ;
El Harfi, K. ;
El Bouadili, A. .
ENERGY CONVERSION AND MANAGEMENT, 2008, 49 (12) :3666-3671
[2]   Thermogravimetric analysis of walnut shell as pyrolysis feedstock [J].
Acikalin, Korkut .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2011, 105 (01) :145-150
[3]   Energy recovery from pyrolysis and gasification of mangrove [J].
Ahmed, I. ;
Jangsawang, W. ;
Gupta, A. K. .
APPLIED ENERGY, 2012, 91 (01) :173-179
[4]  
[Anonymous], REN EN PROGR 2020 TA
[5]  
Biagini E., 2002, Energy and Material Recovery by Thermal Treatments of Biomasses and Wastes (Co-combustion, Pyrolysis and Gasification)
[6]   Mathematical considerations for nonisothermal kinetics in thermal decomposition [J].
Caballero, JA ;
Conesa, JA .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2005, 73 (01) :85-100
[7]   Pyrolysis kinetics of almond shells and olive stones considering their organic fractions [J].
Caballero, JA ;
Conesa, JA ;
Font, R ;
Marcilla, A .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 1997, 42 (02) :159-175
[8]   Smoothing and differentiation of thermogravimetric data of biomass materials [J].
H. X. Chen ;
N. A. Liu ;
L. F. Shu ;
R. W. Zong .
Journal of Thermal Analysis and Calorimetry, 2004, 78 (3) :1029-1041
[9]   Thermal degradation of olive solid waste: Influence of particle size and oxygen concentration [J].
Chouchene, Ajmia ;
Jeguirim, Mejdi ;
Khiari, Basma ;
Zagrouba, Fathi ;
Trouve, Gwenaelle .
RESOURCES CONSERVATION AND RECYCLING, 2010, 54 (05) :271-277
[10]   Sensitivity and uncertainty analysis of heat-exchanger designs to physical properties estimation [J].
Clarke, DD ;
Vasquez, VR ;
Whiting, WB ;
Greiner, M .
APPLIED THERMAL ENGINEERING, 2001, 21 (10) :993-1017