Entropy Method and Asymptotic Behaviours of Finite Volume Schemes

被引:9
作者
Chainais-Hillairet, Claire [1 ,2 ]
机构
[1] Univ Lille 1, Lab P Painleve, UMR 8524, CNRS, F-59655 Villeneuve Dascq, France
[2] INRIA Lille Nord Europe, Team MEPHYSTO, F-59650 Villeneuve Dascq, France
来源
FINITE VOLUMES FOR COMPLEX APPLICATIONS VII - METHODS AND THEORETICAL ASPECTS | 2014年 / 77卷
关键词
DRIFT-DIFFUSION MODEL; QUASI-NEUTRAL LIMIT; TIME LAYER PROBLEM; EXPONENTIAL DECAY; FREE-ENERGY; EQUATIONS; SYSTEMS; SEMICONDUCTORS; EQUILIBRIUM;
D O I
10.1007/978-3-319-05684-5_2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
When deriving a numerical scheme for a system of PDEs coming for instance from physics or engineering, it is crucial to propose a scheme which preserves the asymptotic behaviour of the continuous system, with respect to time as with respect to some parameters. In this paper, we want to show how the entropy method can be applied to some finite volume schemes and permits to show that some schemes are asymptotic preserving. We focus on two problems: the nonlinear diffusion equation (long time behaviour) and the drift-diffusion system (long time behaviour and quasi-neutral limit). Some results have been obtained in collaboration with jungel and Schuchnigg [10] and the others with Bessemoulin-Chatard and Vignal [4].
引用
收藏
页码:17 / 35
页数:19
相关论文
共 27 条
  • [1] Entropies and equilibria of many-particle systems:: An essay on recent research
    Arnold, A
    Carrillo, JA
    Desvillettes, L
    Dolbeault, J
    Jüngel, A
    Lederman, C
    Markowich, PA
    Toscani, G
    Villani, C
    [J]. MONATSHEFTE FUR MATHEMATIK, 2004, 142 (1-2): : 35 - 43
  • [2] Numerical methods for the simulation of a corrosion model with moving oxide layer
    Bataillon, C.
    Bouchon, F.
    Chainais-Hillairet, C.
    Fuhrmann, J.
    Hoarau, E.
    Touzani, R.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (18) : 6213 - 6231
  • [3] Bessemoulin- Chatard M., STUDY FINITE V UNPUB
  • [4] A finite volume scheme for convection-diffusion equations with nonlinear diffusion derived from the Scharfetter-Gummel scheme
    Bessemoulin-Chatard, Marianne
    [J]. NUMERISCHE MATHEMATIK, 2012, 121 (04) : 637 - 670
  • [5] Carlen EA, 2005, COMMUN MATH SCI, V3, P171
  • [6] Exponential decay towards equilibrium for the inhomogeneous Aizenman-Bak model
    Carrillo, J. A.
    Desvillettes, L.
    Fellner, K.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 278 (02) : 433 - 451
  • [7] Carrillo JA, 2003, DISCRETE CONT DYN-B, V3, P1
  • [8] Carrillo JA, 2000, INDIANA U MATH J, V49, P113
  • [9] Carrillo JA, 2006, DISCRETE CONT DYN-B, V6, P1027
  • [10] Finite volume scheme for multi-dimensional drift-diffusion equations and convergence analysis
    Chainais-Hillairet, C
    Liu, JG
    Peng, YJ
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2003, 37 (02): : 319 - 338