Spin-singlet Gaffnian wave function for fractional quantum Hall systems

被引:3
作者
Davenport, Simon C. [1 ]
Ardonne, Eddy [2 ,3 ]
Regnault, Nicolas [4 ,5 ,6 ]
Simon, Steven H. [1 ]
机构
[1] Univ Oxford, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3NP, England
[2] Royal Inst Technol, NORDITA, SE-10691 Stockholm, Sweden
[3] Stockholm Univ, Dept Phys, AlbaNova Univ Ctr, SE-10691 Stockholm, Sweden
[4] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[5] ENS, Lab Pierre Aigrain, F-75005 Paris, France
[6] CNRS, F-75005 Paris, France
来源
PHYSICAL REVIEW B | 2013年 / 87卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
CONFORMAL FIELD-THEORIES; PARTITION-FUNCTIONS; LANDAU-LEVEL; DIMENSIONS; STATES; ALGEBRAS; SYMMETRY; FERMIONS; FLUID;
D O I
10.1103/PhysRevB.87.045310
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We characterize in detail a wave function conceivable in fractional quantum Hall systems where a spin or equivalent degree of freedom is present. This wave function combines the properties of two previously proposed quantum Hall wave functions, namely the non-Abelian spin-singlet state and the nonunitary Gaffnian wave function. This is a spin-singlet generalization of the spin-polarized Gaffnian, which we call the "spin-singlet Gaffnian" (SSG). In this paper we present evidence demonstrating that the SSG corresponds to the ground state of a certain local Hamiltonian, which we explicitly construct, and, further, we provide a relatively simple analytic expression for the unique ground-state wave functions, which we define as the zero energy eigenstates of that local Hamiltonian. In addition, we have determined a certain nonunitary, rational conformal field theory which provides an underlying description of the SSG and we thus conclude that the SSG is ungapped in the thermodynamic limit. In order to verify our construction, we implement two recently proposed techniques for the analysis of fractional quantum Hall trial states: The "spin dressed squeezing algorithm," and the "generalized Pauli principle." DOI: 10.1103/PhysRevB.87.045310
引用
收藏
页数:13
相关论文
共 68 条
[1]   Structure of spinful quantum Hall states: A squeezing perspective [J].
Ardonne, E. ;
Regnault, N. .
PHYSICAL REVIEW B, 2011, 84 (20)
[2]   Separation of spin and charge in paired spin-singlet quantum Hall states [J].
Ardonne, E ;
van Lankvelt, FJM ;
Ludwig, AWW ;
Schoutens, K .
PHYSICAL REVIEW B, 2002, 65 (04) :1-4
[3]   Non-abelian spin-singlet quantum Hall states: wave functions and quasihole state counting [J].
Ardonne, E ;
Read, N ;
Rezayi, E ;
Schoutens, K .
NUCLEAR PHYSICS B, 2001, 607 (03) :549-576
[4]   New class of non-Abelian spin-singlet quantum Hall states [J].
Ardonne, E ;
Schoutens, K .
PHYSICAL REVIEW LETTERS, 1999, 82 (25) :5096-5099
[5]   SU(N) quantum Hall skyrmions [J].
Arovas, DP ;
Karlhede, A ;
Lilliehöök, D .
PHYSICAL REVIEW B, 1999, 59 (20) :13147-13150
[6]   Condensate-induced transitions between topologically ordered phases [J].
Bais, F. A. ;
Slingerland, J. K. .
PHYSICAL REVIEW B, 2009, 79 (04)
[7]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[8]   Pfaffian quantum Hall state made simple: Multiple vacua and domain walls on a thin torus [J].
Bergholtz, E. J. ;
Kailasvuori, J. ;
Wikberg, E. ;
Hansson, T. H. ;
Karlhede, A. .
PHYSICAL REVIEW B, 2006, 74 (08)
[9]   Half-filled lowest Landau level on a thin torus [J].
Bergholtz, EJ ;
Karlhede, A .
PHYSICAL REVIEW LETTERS, 2005, 94 (02) :1-4
[10]   Generalized clustering conditions of Jack polynomials at negative Jack parameter α [J].
Bernevig, B. Andrei ;
Haldane, E. D. M. .
PHYSICAL REVIEW B, 2008, 77 (18)