Rotation-invariant feature extraction using a structural co-occurrence matrix

被引:39
作者
Bezerra Ramalho, Geraldo L. [1 ]
Ferreira, Daniel S. [1 ,2 ]
Reboucas Filho, Pedro P. [1 ,2 ]
Sombra de Medeiros, Fatima N. [2 ]
机构
[1] Inst Fed Educ Ciencia & Tecnol Ceara, Maracanau, CE, Brazil
[2] Univ Fed Ceara, Programa Posgrad Engn Teleinformat, Fortaleza, Ceara, Brazil
关键词
Structural co-occurrence matrix; Feature extraction; Pattern recognition experiments; LOCAL BINARY PATTERN; TEXTURE; RECOGNITION; MOMENTS; SIMILARITY; TRANSFORM; PATH;
D O I
10.1016/j.measurement.2016.08.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Feature extraction plays a key role in pattern recognition. Here we present a rotation-invariant feature extraction methodology based on a structural approach using co-occurrence statistics. We assessed the performance of our method comparing it to a gray-level co-occurrence matrix, local binary patterns and invariant moments in pattern recognition experiments. The results show that the proposed method provides an efficient and fast way to analyze digital images. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:406 / 415
页数:10
相关论文
共 44 条
[1]   AUTOMATIC THRESHOLDING OF GRAY-LEVEL PICTURES USING TWO-DIMENSIONAL ENTROPY [J].
ABUTALEB, AS .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1989, 47 (01) :22-32
[2]   Face description with local binary patterns:: Application to face recognition [J].
Ahonen, Timo ;
Hadid, Abdenour ;
Pietikainen, Matti .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (12) :2037-2041
[3]   K-means based histogram using multiresolution feature vectors for color texture database retrieval [J].
Bai, Cong ;
Zhang, Jinglin ;
Liu, Zhi ;
Zhao, Wan-Lei .
MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (04) :1469-1488
[4]   A tutorial on Support Vector Machines for pattern recognition [J].
Burges, CJC .
DATA MINING AND KNOWLEDGE DISCOVERY, 1998, 2 (02) :121-167
[5]  
Chaki J., 2013, IEEE T IMAGE PROCESS, V22, P61
[6]   Plant leaf recognition using texture and shape features with neural classifiers [J].
Chaki, Jyotismita ;
Parekh, Ranjan ;
Bhattacharya, Samar .
PATTERN RECOGNITION LETTERS, 2015, 58 :61-68
[7]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[8]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[9]   TEXTURE ANALYSIS USING GENERALIZED CO-OCCURRENCE MATRICES [J].
DAVIS, LS ;
JOHNS, SA ;
AGGARWAL, JK .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1979, 1 (03) :251-259
[10]   Ultrasonic Sensor Signals and Optimum Path Forest Classifier for the Microstructural Characterization of Thermally-Aged Inconel 625 Alloy [J].
de Albuquerque, Victor Hugo C. ;
Barbosa, Cleisson V. ;
Silva, Cleiton C. ;
Moura, Elineudo P. ;
Reboucas Filho, Pedro P. ;
Papa, Joao P. ;
Tavares, Joao Manuel R. S. .
SENSORS, 2015, 15 (06) :12474-12497