Transverse electron-scale instability in relativistic shear flows

被引:24
作者
Alves, E. P. [1 ]
Grismayer, T. [1 ]
Fonseca, R. A. [1 ,2 ]
Silva, L. O. [1 ]
机构
[1] Univ Lisbon, Inst Super Tecn, GoLP Inst Plasmas & Fusao Nucl, P-1049001 Lisbon, Portugal
[2] Univ Lisbon, DCTI ISCTE Inst, P-1649026 Lisbon, Portugal
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 02期
基金
欧洲研究理事会;
关键词
MAGNETIC-FIELD GENERATION; KELVIN-HELMHOLTZ INSTABILITY; RAYLEIGH-TAYLOR INSTABILITY; HOLLOW PLASMA CHANNEL; COLLISIONLESS SHOCKS; PARTICLE-ACCELERATION; GROWTH;
D O I
10.1103/PhysRevE.92.021101
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Electron-scale surface waves are shown to be unstable in the transverse plane of a sheared flow in an initially unmagnetized collisionless plasma, not captured by (magneto) hydrodynamics. It is found that these unstable modes have a higher growth rate than the closely related electron-scale Kelvin-Helmholtz instability in relativistic shears. Multidimensional particle-in-cell simulations verify the analytic results and further reveal the emergence of mushroomlike electron density structures in the nonlinear phase of the instability, similar to those observed in the Rayleigh Taylor instability despite the great disparity in scales and different underlying physics. This transverse electron-scale instability may play an important role in relativistic and supersonic sheared flow scenarios, which are stable at the (magneto) hydrodynamic level. Macroscopic (>> c/omega(pe)) fields are shown to be generated by this microscopic shear instability, which are relevant for particle acceleration, radiation emission, and to seed magnetohydrodynamic processes at long time scales.
引用
收藏
页数:5
相关论文
共 41 条
  • [1] LARGE-SCALE MAGNETIC FIELD GENERATION VIA THE KINETIC KELVIN-HELMHOLTZ INSTABILITY IN UNMAGNETIZED SCENARIOS
    Alves, E. P.
    Grismayer, T.
    Martins, S. F.
    Fiuza, F.
    Fonseca, R. A.
    Silva, L. O.
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2012, 746 (02)
  • [2] Alves E. P., ARXIV150608715V1
  • [3] RAYLEIGH-TAYLOR INSTABILITY AND LASER-PELLET FUSION
    BODNER, SE
    [J]. PHYSICAL REVIEW LETTERS, 1974, 33 (13) : 761 - 764
  • [4] Bodo G, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.036304
  • [5] Bret A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.046401
  • [6] Chandrasekhar S., 1961, HYDRODYNAMIC HYDROMA
  • [7] NONLINEAR DEVELOPMENT OF ELECTROMAGNETIC INSTABILITIES IN ANISOTROPIC PLASMAS
    DAVIDSON, RC
    WAGNER, CE
    HAMMER, DA
    HABER, I
    [J]. PHYSICS OF FLUIDS, 1972, 15 (02) : 317 - &
  • [8] Weibel-Instability-Mediated Collisionless Shocks in the Laboratory with Ultraintense Lasers
    Fiuza, F.
    Fonseca, R. A.
    Tonge, J.
    Mori, W. B.
    Silva, L. O.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (23)
  • [9] One-to-one direct modeling of experiments and astrophysical scenarios: pushing the envelope on kinetic plasma simulations
    Fonseca, R. A.
    Martins, S. F.
    Silva, L. O.
    Tonge, J. W.
    Tsung, F. S.
    Mori, W. B.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (12)
  • [10] Fonseca RA, 2002, LECT NOTES COMPUT SC, V2331, P342