An open experimental database for exploring inorganic materials

被引:137
作者
Zakutayev, Andriy [1 ]
Wunder, Nick [2 ]
Schwarting, Marcus [1 ,2 ]
Perkins, John D. [1 ]
White, Robert [1 ,2 ]
Munch, Kristin [2 ]
Tumas, William [1 ]
Phillips, Caleb [2 ]
机构
[1] Natl Renewable Energy Lab, Ctr Mat Sci, Golden, CO 80401 USA
[2] Natl Renewable Energy Lab, Computat Sci Ctr, Golden, CO 80401 USA
关键词
GAP;
D O I
10.1038/sdata.2018.53
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The use of advanced machine learning algorithms in experimental materials science is limited by the lack of sufficiently large and diverse datasets amenable to data mining. If publicly open, such data resources would also enable materials research by scientists without access to expensive experimental equipment. Here, we report on our progress towards a publicly open High Throughput Experimental Materials (HTEM) Database (htem.nrel.gov). This database currently contains 140,000 sample entries, characterized by structural (100,000), synthetic (80,000), chemical (70,000), and optoelectronic (50,000) properties of inorganic thin film materials, grouped in >4,000 sample entries across > 100 materials systems; more than a half of these data are publicly available. This article shows how the HTEM database may enable scientists to explore materials by browsing web-based user interface and an application programming interface. This paper also describes a HTE approach to generating materials data, and discusses the laboratory information management system (LIMS), that underpin HTEM database. Finally, this manuscript illustrates how advanced machine learning algorithms can be adopted to materials science problems using this open data resource.
引用
收藏
页数:12
相关论文
共 40 条
  • [1] [Anonymous], 2013, Informatics for materials science and engineering: data-driven discovery for accelerated experimentation and application
  • [2] Appenzeller T., 2017, SCIENCE, DOI [10.1126/science.aan7064, DOI 10.1126/SCIENCE.AAN7064]
  • [3] New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design
    Belsky, A
    Hellenbrandt, M
    Karen, VL
    Luksch, P
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2002, 58 : 364 - 369
  • [4] Finding Unprecedentedly Low-Thermal-Conductivity Half-Heusler Semiconductors via High-Throughput Materials Modeling
    Carrete, Jesus
    Li, Wu
    Mingo, Natalio
    Wang, Shidong
    Curtarolo, Stefano
    [J]. PHYSICAL REVIEW X, 2014, 4 (01):
  • [5] AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
    Curtarolo, Stefano
    Setyawan, Wahyu
    Wang, Shidong
    Xue, Junkai
    Yang, Kesong
    Taylor, Richard H.
    Nelson, Lance J.
    Hart, Gus L. W.
    Sanvito, Stefano
    Buongiorno-Nardelli, Marco
    Mingo, Natalio
    Levy, Ohad
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2012, 58 : 227 - 235
  • [6] Informatics Infrastructure for the Materials Genome Initiative
    Dima, Alden
    Bhaskarla, Sunil
    Becker, Chandler
    Brady, Mary
    Campbell, Carelyn
    Dessauw, Philippe
    Hanisch, Robert
    Kattner, Ursula
    Kroenlein, Kenneth
    Newrock, Marcus
    Peskin, Adele
    Plante, Raymond
    Li, Sheng-Yen
    Rigodiat, Pierre-Francois
    Amaral, Guillaume Sousa
    Trautt, Zachary
    Schmitt, Xavier
    Warren, James
    Youssef, Sharief
    [J]. JOM, 2016, 68 (08) : 2053 - 2064
  • [7] Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies
    Green, M. L.
    Choi, C. L.
    Hattrick-Simpers, J. R.
    Joshi, A. M.
    Takeuchi, I.
    Barron, S. C.
    Campo, E.
    Chiang, T.
    Empedocles, S.
    Gregoire, J. M.
    Kusne, A. G.
    Martin, J.
    Mehta, A.
    Persson, K.
    Trautt, Z.
    Van Duren, J.
    Zakutayev, A.
    [J]. APPLIED PHYSICS REVIEWS, 2017, 4 (01):
  • [8] Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials
    Green, Martin L.
    Takeuchi, Ichiro
    Hattrick-Simpers, Jason R.
    [J]. JOURNAL OF APPLIED PHYSICS, 2013, 113 (23)
  • [9] Gurin J., 2014, Open data now: The secret to hot startups, smart investing, savvy marketing, and fast innovation
  • [10] Finding Nature's Missing Ternary Oxide Compounds Using Machine Learning and Density Functional Theory
    Hautier, Geoffroy
    Fischer, Christopher C.
    Jain, Anubhav
    Mueller, Tim
    Ceder, Gerbrand
    [J]. CHEMISTRY OF MATERIALS, 2010, 22 (12) : 3762 - 3767