Manipulation Planning with Goal Sets Using Constrained Trajectory Optimization

被引:0
作者
Dragan, Anca D. [1 ]
Ratliff, Nathan D. [2 ]
Srinivasa, Siddhartha S. [2 ]
机构
[1] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
[2] Intel Labs, Pittsburgh, PA 15213 USA
来源
2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA) | 2011年
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Goal sets are omnipresent in manipulation: picking up objects, placing them on counters or in bins, handing them off - all of these tasks encompass continuous sets of goals. This paper describes how to design optimal trajectories that exploit goal sets. We extend CHOMP (Covariant Hamiltonian Optimization for Motion Planning), a recent trajectory optimizer that has proven effective on high-dimensional problems, to handle trajectory-wide constraints, and relate the solution to the intuition of taking unconstrained steps and subsequently projecting them onto the constraints. We then show how this projection simplifies for goal sets (i.e. constraints that affect only the end-point). Finally, we present experiments on a personal robotics platform that show the importance of exploiting goal sets in trajectory optimization for day-to-day manipulation tasks.
引用
收藏
页数:7
相关论文
共 50 条
[31]   Feasible Polynomial Trajectory Planning for Aerial Manipulation [J].
Morton, Kye ;
McFadyen, Aaron ;
Toro, Luis Felipe Gonzalez .
2020 IEEE AEROSPACE CONFERENCE (AEROCONF 2020), 2020,
[32]   Nonprehensile Manipulation:A Trajectory-Planning Perspective [J].
Acharya, Praneel ;
Nguyen, Kim-Doang ;
La, Hung M. ;
Liu, Dikai ;
Chen, I-Ming .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2021, 26 (01) :527-538
[33]   Scalable Collaborative Manipulation with Distributed Trajectory Planning [J].
Shorinwa, Ola ;
Schwager, Mac .
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, :9108-9115
[34]   Task-Constrained Trajectory Planning of Free-Floating Space-Robotic Systems Using Convex Optimization [J].
Misra, Gaurav ;
Bai, Xiaoli .
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2017, 40 (11) :2857-2870
[35]   Constrained Stein Variational Trajectory Optimization [J].
Power, Thomas ;
Berenson, Dmitry .
IEEE TRANSACTIONS ON ROBOTICS, 2024, 40 :3602-3619
[36]   Inversion based constrained trajectory optimization [J].
Petit, N ;
Milam, MB ;
Murray, RM .
NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, :1211-1216
[37]   Geometrically Constrained Trajectory Optimization for Multicopters [J].
Wang, Zhepei ;
Zhou, Xin ;
Xu, Chao ;
Gao, Fei .
IEEE TRANSACTIONS ON ROBOTICS, 2022, 38 (05) :3259-3278
[38]   Trajectory Optimization for Vehicles in a Constrained Environment [J].
Bayer, Florian ;
Hauser, John .
2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, :5625-5630
[39]   Constrained trajectory optimization for lunar landing [J].
Hawkins, Alisa M. ;
Fill, Thomas J. ;
Proulx, Ronald J. ;
Feron, Eric M. J. .
SPACEFLIGHT MECHANICS 2006, VOL 124, PTS 1 AND 2, 2006, 124 :815-836
[40]   Ready, Set, Plan! Planning to Goal Sets Using Generalized Bayesian Inference [J].
Pavlasek, Jana ;
Lewis, Stanley Robert ;
Sundaralingam, Balakumar ;
Ramos, Fabio ;
Hermans, Tucker .
CONFERENCE ON ROBOT LEARNING, VOL 229, 2023, 229