Bounds for the best constant in an improved Hardy-Sobolev inequality

被引:0
作者
Chaudhuri, N [1 ]
机构
[1] Australian Natl Univ, Ctr Math & Its Appl, Canberra, ACT 0200, Australia
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2003年 / 22卷 / 04期
关键词
Hardy-Sobolev inequality; best constant in inequality;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we show that the best constant C in the improved Hardy-Sobolev inequality of Adimurthi, Chaudhuri and Ramaswamy [1] for 2 less than or equal to p < n is bounded by p-1/p(2) (n-p/p)(p-2) less than or equal to C less than or equal to p-1/2 (n-p/p) (p-2).
引用
收藏
页码:757 / 765
页数:9
相关论文
共 15 条
[1]  
Adimurthi, 2002, P ROY SOC EDINB A, V132, P1021
[2]   An improved Hardy-Sobolev inequality and its application [J].
Adimurthi ;
Chaudhuri, N ;
Ramaswamy, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (02) :489-505
[3]  
ADIMURTHI, 2002, IMPROVED HARDYSOBOLE
[4]  
Bandle C., 1980, ISOPERIMETRIC INEQUA
[5]   Extremal functions for Hardy's inequality with weight [J].
Brezis, H ;
Marcus, M ;
Shafrir, I .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 171 (01) :177-191
[6]  
Brezis H., 1997, Rev. Mat. Univ. Complut. Madrid, V10, P443
[7]  
Brezis H., 1997, ANN SC NORM PISA, V25, P217
[8]   Existence versus instantaneous blow-up for linear heat equations with singular potentials [J].
Cabré, X ;
Martel, Y .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (11) :973-978
[9]   Weak eigenfunctions for the linearization of extremal elliptic problems [J].
Cabre, X ;
Martel, Y .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 156 (01) :30-56
[10]   Existence of positive solutions of some semilinear elliptic equations with singular coefficients [J].
Chaudhuri, N ;
Ramaswamy, M .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2001, 131 :1275-1295