Review of control strategy of large horizontal-axis wind turbines yaw system

被引:76
|
作者
Yang, Jian [1 ,2 ]
Fang, Lingqi [1 ,2 ]
Song, Dongran [1 ,2 ]
Su, Mei [1 ,2 ]
Yang, Xuebing [3 ,4 ]
Huang, Lingxiang [3 ,4 ]
Joo, Young Hoon [5 ]
机构
[1] Cent South Univ, Sch Automat, Changsha, Peoples R China
[2] Hunan Prov Key Lab Power Elect Equipment & Grid, Changsha, Peoples R China
[3] XEMC Windpower Co Ltd, Xiangtan, Peoples R China
[4] State Key Lab Offshore Wind Power Technol & Testi, Xiangtan, Peoples R China
[5] Kunsan Natl Univ, Sch IT Informat & Control Engn, Kunsan, South Korea
基金
新加坡国家研究基金会; 中国国家自然科学基金;
关键词
fatigue load reduction; wind energy capture; wind farm optimization; yaw control; POWER EXTRACTION; ERROR; SPEED; OPTIMIZATION; DIRECTION; DESIGN; LOADS; MODEL;
D O I
10.1002/we.2564
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In order to meet the increasing demand of wind energy utilization, wind turbines (WTs) are developing toward the trend of large size and large capacity. In such a trend, various advanced yaw control strategies have been proposed to improve large WTs' comprehensive performance, but the analysis and summary of these strategies are still lacking. Therefore, it is necessary to have a review of yaw control, which not only enables readers to understand the current status of yaw control research but also promotes the development of wind energy technology. This paper presents a review of the current situation of yaw control for WTs, focusing on the mechanical/aerodynamic parts. The mechanical part is concerned with the WT yaw system and its effect on the fatigue load of the WT, and the aerodynamic part involves the wind energy capture and wake redirection to reduce the impact on adjacent WTs. In this review, the existing yaw control methods are classified in term of three control objectives: (1) increasing the wind energy capture of a single WT, (2) reducing the fatigue load of a single WT, and (3) maximizing the total power production of the whole wind farm and optimizing the wind farm fatigue load. On this basis, the control mechanism, the control algorithm, and the results are presented and analyzed in detail. Meanwhile, the advantages and disadvantages of the existing achievements are discussed. In addition, in a conclusion of the review, the future research direction has been identified.
引用
收藏
页码:97 / 115
页数:19
相关论文
共 50 条
  • [1] A Model predictive control for the yaw control system of horizontal-axis wind turbines
    Song, Dongran
    Li, Li
    Yang, Jian
    Joo, Young Hoon
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 237 - 242
  • [2] Stochastic model predictive control for the yaw control system of horizontal-axis wind turbines
    Yang, Jian
    Fang, Lingqi
    Song, Dongran
    Li, Ya
    Liu, Beibei
    Lv, Quanxu
    PROCEEDINGS OF THE 15TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2020), 2020, : 478 - 483
  • [3] A REVIEW OF RESONANCE RESPONSE IN LARGE, HORIZONTAL-AXIS WIND TURBINES
    SULLIVAN, TL
    SOLAR ENERGY, 1982, 29 (05) : 377 - 383
  • [4] LARGE, HORIZONTAL-AXIS WIND TURBINES.
    Linscott, Bradford S.
    Perkins, Porter
    Dennett, Joann T.
    NASA Technical Memorandum, 1984,
  • [5] Review on Small Horizontal-Axis Wind Turbines
    Kamal A. R. Ismail
    Fatima A. M. Lino
    Odenir de Almeida
    Mohamed Teggar
    Vicente Luiz Scalon
    Willian M. Okita
    Arabian Journal for Science and Engineering, 2024, 49 : 1367 - 1391
  • [6] Review on Small Horizontal-Axis Wind Turbines
    Ismail, Kamal A. R.
    Lino, Fatima A. M.
    de Almeida, Odenir
    Teggar, Mohamed
    Scalon, Vicente Luiz
    Okita, Willian M.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024, 49 (02) : 1367 - 1391
  • [7] Wind vane correction during yaw misalignment for horizontal-axis wind turbines
    Rott, Andreas
    Hoening, Leo
    Hulsman, Paul
    Lukassen, Laura J.
    Moldenhauer, Christof
    Kuehn, Martin
    WIND ENERGY SCIENCE, 2023, 8 (11) : 1755 - 1770
  • [8] Yaw Behavior of Horizontal-Axis Small Wind Turbines in an Urban Area
    Nishizawa, Yoshifumi
    Tokuyama, Hideki
    Nakajo, Yuichi
    Ushiyama, Izumi
    WIND ENGINEERING, 2009, 33 (01) : 19 - 30
  • [9] Analysis of the Passive Yaw Mechanism of Small Horizontal-Axis Wind Turbines
    Cui, Wenzhuan
    Yu, Feng
    Liu, Xiongwei
    Whitty, Justin
    2009 WORLD NON-GRID-CONNECTED WIND POWER AND ENERGY CONFERENCE, 2009, : 105 - +
  • [10] On the dynamics of the pitch control loop in horizontal-axis large wind turbines
    Suryanarayanan, S
    Dixit, A
    ACC: Proceedings of the 2005 American Control Conference, Vols 1-7, 2005, : 686 - 690