How do sinking Phytoplankton species manage to persist?

被引:209
作者
Huisman, J
Arrayás, M
Ebert, U
Sommeijer, B
机构
[1] Univ Amsterdam, Inst Biodivers & Ecosyst Dynam, NL-1018 WS Amsterdam, Netherlands
[2] CWI, Ctr Math & Comp Sci, NL-1090 GB Amsterdam, Netherlands
[3] Leiden Univ, Inst Lorentz, NL-2300 RA Leiden, Netherlands
关键词
critical depth; export production; light limitation; phytoplankton blooms; reaction-diffusion equation; turbulence;
D O I
10.1086/338511
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Phytoplankton require light for photosynthesis. Yet, most phytoplankton species are heavier than water and therefore sink. How can these sinking species persist? Somehow, the answer should lie in the turbulent motion that redisperses sinking phytoplankton over the vertical water column. Here, we show, using a reaction-advection-diffusion equation of light-limited phytoplankton, that there is a turbulence window sustaining sinking phytoplankton species in deep waters. If turbulent diffusion is too high, phytoplankton are mixed to great depths, and the depth-averaged light conditions are too low to allow net positive population growth. Conversely, if turbulent diffusion is too low, sinking phytoplankton populations end up at the ocean floor and succumb in the dark. At intermediate levels of turbulent diffusion, however, phytoplankton populations can outgrow both mixing rates and sinking rates. In this way, the reproducing population as a whole can maintain a position in the well-lit zone near the top of the water column, even if all individuals within the population have a tendency to sink. This theory unites earlier classic results by Sverdrup and Riley as well as our own recent findings and provides a new conceptual framework for the understanding of phytoplankton dynamics under the influence of mixing processes.
引用
收藏
页码:245 / 254
页数:10
相关论文
共 37 条
[1]   Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean [J].
Arrigo, KR ;
Robinson, DH ;
Worthen, DL ;
Dunbar, RB ;
DiTullio, GR ;
VanWoert, M ;
Lizotte, MP .
SCIENCE, 1999, 283 (5400) :365-367
[2]   VODE - A VARIABLE-COEFFICIENT ODE SOLVER [J].
BROWN, PN ;
BYRNE, GD ;
HINDMARSH, AC .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1989, 10 (05) :1038-1051
[3]   Comparison of the light-limited growth of the nitrogen-fixing cyanobacteria Anabaena and Aphanizomenon [J].
De Nobel, WT ;
Matthijs, HCP ;
Von Elert, E ;
Mur, LR .
NEW PHYTOLOGIST, 1998, 138 (04) :579-587
[4]   TIME AND SPACE SCALES OF VERTICAL MIXING AND ADVECTION OF PHYTOPLANKTON IN THE UPPER OCEAN [J].
DENMAN, KL ;
GARGETT, AE .
LIMNOLOGY AND OCEANOGRAPHY, 1983, 28 (05) :801-815
[5]   Rapid and early export of Phaeocystis antarctica blooms in the Ross Sea, Antarctica [J].
DiTullio, GR ;
Grebmeier, JM ;
Arrigo, KR ;
Lizotte, MP ;
Robinson, DH ;
Leventer, A ;
Barry, JB ;
VanWoert, ML ;
Dunbar, RB .
NATURE, 2000, 404 (6778) :595-598
[6]   Toward a theory of biological-physical control of harmful algal bloom dynamics and impacts [J].
Donaghay, PL ;
Osborn, TR .
LIMNOLOGY AND OCEANOGRAPHY, 1997, 42 (05) :1283-1296
[7]   Critical conditions for phytoplankton blooms [J].
Ebert, U ;
Arrayás, M ;
Temme, N ;
Sommeijer, B ;
Huisman, J .
BULLETIN OF MATHEMATICAL BIOLOGY, 2001, 63 (06) :1095-1124
[8]   Biogeochemical controls and feedbacks on ocean primary production [J].
Falkowski, PG ;
Barber, RT ;
Smetacek, V .
SCIENCE, 1998, 281 (5374) :200-206
[9]  
Hirsch C., 1988, NUMERICAL COMPUTATIO, V1
[10]   Species dynamics in phytoplankton blooms: Incomplete mixing and competition for light [J].
Huisman, J ;
van Oostveen, P ;
Weissing, FJ .
AMERICAN NATURALIST, 1999, 154 (01) :46-68