Elementary geometric local-global principles for fields

被引:5
作者
Fehm, Arno [1 ]
机构
[1] Univ Konstanz, Fachbereich Math & Stat, Constance, Germany
关键词
Local-global principle; Diophantine definability; PSC; PRC; PpC; ABSOLUTE GALOIS GROUP;
D O I
10.1016/j.apal.2013.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define and investigate a family of local-global principles for fields involving both orderings and p-valuations. This family contains the PAC, PRC and PpC fields and exhausts the class of pseudo classically closed fields. We show that the fields satisfying such a local-global principle form an elementary class, admit diophantine definitions of holomorphy domains, and their orderings satisfy the strong approximation property. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:989 / 1008
页数:20
相关论文
共 37 条
[1]  
[Anonymous], 1981, Lect. Notes Math.
[2]  
[Anonymous], 2002, MODEL THEORY INTRO
[3]  
Bourbaki Nicolas, 1988, ALGEBRA
[4]   Pseudo-algebraically closed rings [J].
Darnière, L .
MANUSCRIPTA MATHEMATICA, 2001, 105 (01) :13-46
[5]  
Darnière L, 2000, J REINE ANGEW MATH, V529, P75
[6]  
Engler A.J., 2005, SPRINGER MG MATH
[7]  
Ershov Yuri, 1982, SOV MATH DOKL, V25, P477
[8]  
Ershov Yuri, 1992, ALG LOG, V31, P342
[9]  
Ershov Yuri, 1983, ALGEBR LOG+, V22, P277
[10]  
Fehm Arno, 2013, ELEMENTARY THE UNPUB