Computer simulation of laser-beam self-focusing in a plasma

被引:9
作者
Subbarao, D [1 ]
Singh, P [1 ]
Uma, R [1 ]
Bhaskar, S [1 ]
机构
[1] Indian Inst Technol, Ctr Energy Studies, Fus Studies Program, Plasma Sci & Technol Grp, New Delhi 110016, India
关键词
D O I
10.1017/S0022377899007540
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Laser-beam or soliton propagation is best modelled for fast computation using a split-step Fourier method based on an orthogonal transform technique known as the beam-propagation method. The beam-propagation split-step Fourier-transform technique in one and two dimensions for the propagation of a soliton or laser beam respectively in a nonlinear plasma and a split-step Hankel-transform-based algorithm for cylindrical-beam propagation close to circular cross-sectional symmetry and its computational implementation are discussed, Attention is particularly focused on the verification of the paraxial approximations of the soliton or the laser beam using these techniques, after a brief review of the beam-propagation method.
引用
收藏
页码:449 / 467
页数:19
相关论文
共 82 条
[21]   TIME-DEPENDENT PROPAGATION OF HIGH-ENERGY LASER-BEAMS THROUGH ATMOSPHERE .2. [J].
FLECK, JA ;
MORRIS, JR ;
FEIT, MD .
APPLIED PHYSICS, 1977, 14 (01) :99-115
[22]   TIME-DEPENDENT PROPAGATION OF HIGH-ENERGY LASER-BEAMS THROUGH ATMOSPHERE [J].
FLECK, JA ;
MORRIS, JR ;
FEIT, MD .
APPLIED PHYSICS, 1976, 10 (02) :129-160
[23]   NUMERICAL AND THEORETICAL-STUDY OF CERTAIN NON-LINEAR WAVE PHENOMENA [J].
FORNBERG, B ;
WHITHAM, GB .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 289 (1361) :373-404
[24]   COMPUTER-GENERATED MOTION PICTURES OF 1-DIMENSIONAL QUANTUM-MECHANICAL TRANSMISSION AND REFLECTION PHENOMENA [J].
GOLDBERG, A ;
SCHEY, HM ;
SCHWARTZ, JL .
AMERICAN JOURNAL OF PHYSICS, 1967, 35 (03) :177-&
[25]  
Goodman W., 2005, INTRO FOURIER OPTICS, V3rd
[26]  
GREIG IS, 1974, J COMPUT PHYS, V20, P60
[27]  
Hardin R. H., 1973, SIAM REV, V15, DOI DOI 10.1137/1015060
[28]   TRANSMISSION OF STATIONARY NONLINEAR OPTICAL PULSES IN DISPERSIVE DIELECTRIC FIBERS .2. NORMAL DISPERSION [J].
HASEGAWA, A ;
TAPPERT, F .
APPLIED PHYSICS LETTERS, 1973, 23 (04) :171-172
[29]  
HASEGAWA A, 1989, OPTICAL SOLITONS FIB, pCH3
[30]   SPLIT-OPERATOR SPECTRAL METHOD FOR SOLVING THE TIME-DEPENDENT SCHRODINGER-EQUATION IN SPHERICAL COORDINATES [J].
HERMANN, MR ;
FLECK, JA .
PHYSICAL REVIEW A, 1988, 38 (12) :6000-6012