Continuous- and discrete-time Glauber dynamics. First- and second-order phase transitions in mean-field Potts models

被引:13
作者
Ostilli, M. [1 ,2 ]
Mukhamedov, F. [3 ]
机构
[1] Univ Calif San Diego, Cooperat Assoc Internet Data Anal, San Diego Supercomp Ctr, San Diego, CA USA
[2] INFM CNR SMC, Stat Mech & Complex Ctr SMC, Rome, Italy
[3] IIUM Kuantan, Fac Sci, Dept Computat & Theoret Sci, Kuantan, Pahang, Malaysia
关键词
STATISTICAL-MECHANICS; NETWORKS;
D O I
10.1209/0295-5075/101/60008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
As is known, at the Gibbs-Boltzmann equilibrium, the mean-field q-state Potts model with a ferromagnetic coupling has only a first-order phase transition when q >= 3, while there is no phase transition for an antiferromagnetic coupling. The same equilibrium is asymptotically reached when one considers the continuous time evolution according to a Glauber dynamics. In this paper we show that, when we consider instead the Potts model evolving according to a discrete-time dynamics, the Gibbs-Boltzmann equilibrium is reached only when the coupling is ferromagnetic while, when the coupling is anti-ferromagnetic, a period-2 orbit equilibrium is reached and a stable second-order phase transition in the Ising mean-field universality class sets in for each component of the orbit. We discuss the implications of this scenario in real-world problems. Copyright (C) EPLA, 2013
引用
收藏
页数:6
相关论文
共 16 条
[1]  
CONTUCCI P., 2012, ARXIV11064714
[2]   Complete analysis of phase transitions and ensemble equivalence for the Curie-Weiss-Potts model [J].
Costeniuc, M ;
Ellis, RS ;
Touchette, H .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (06)
[3]   Critical phenomena in complex networks [J].
Dorogovtsev, S. N. ;
Goltsev, A. V. ;
Mendes, J. F. F. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1275-1335
[4]   RANDOM-CLUSTER MODEL .1. INTRODUCTION AND RELATION TO OTHER MODELS [J].
FORTUIN, CM ;
KASTELEYN, PW .
PHYSICA, 1972, 57 (04) :536-+
[5]   TIME-DEPENDENT STATISTICS OF ISING MODEL [J].
GLAUBER, RJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (02) :294-&
[6]   Nonequilibrium Dynamic Phase Transition in the Ferromagnetic Potts Model [J].
Kinoshita, Takehiro ;
Ohta, Minoru ;
Takamoto, Masahiro ;
Muraoka, Yoshinori ;
Iwashita, Takashi ;
Idogaki, Toshihiro .
INTERNATIONAL CONFERENCE ON MAGNETISM (ICM 2009), 2010, 200
[7]   STATISTICAL-MECHANICS OF PROBABILISTIC CELLULAR AUTOMATA [J].
LEBOWITZ, JL ;
MAES, C ;
SPEER, ER .
JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (1-2) :117-170
[8]  
LITTLE W. A., 1974, MATH BIOSCI, V19, P10120
[9]   Statistical mechanics methods and phase transitions in optimization problems [J].
Martin, OC ;
Monasson, R ;
Zecchina, R .
THEORETICAL COMPUTER SCIENCE, 2001, 265 (1-2) :3-67
[10]   DYNAMICS OF THE INFINITE-RANGED POTTS-MODEL [J].
MENDES, JFF ;
LAGE, EJS .
JOURNAL OF STATISTICAL PHYSICS, 1991, 64 (3-4) :653-672