Rotor Fault Detection of the Converter-Fed Induction Motor using General Regression Neural Networks

被引:0
|
作者
Kaminski, Marcin [1 ]
Kowalski, Czeslaw T. [1 ]
机构
[1] Wroclaw Univ Technol, Inst Maszyn Napedow & Pomiarow Elekt, PL-50372 Wroclaw, Poland
来源
PRZEGLAD ELEKTROTECHNICZNY | 2012年 / 88卷 / 12A期
关键词
induction motor; rotor bar faults; fault detection; general regression neural networks; DIAGNOSIS; MACHINES; DRIVES;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper deals with the application of the General Regression Neural Networks as the rotor fault detectors of the converter-fed induction motors. The major advantages of GRNN application in the considered task are simplified design process and high quality of data classification. Specific fault symptoms of the rotor damages included in the measured stator current spectrum are proposed as elements of the input vectors of the GRNN-based detector. Diagnostic results obtained by the proposed neural detector of rotor faults are demonstrated.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 50 条
  • [1] Rotor fault detector of the converter-fed induction motor based on RBF neural network
    Kowalski, C. T.
    Kaminski, M.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2014, 62 (01) : 69 - 76
  • [2] Stator faults diagnosis of the converter-fed induction motor using symmetrical components and neural networks
    Kowalski, Czeslaw T.
    Wolkiewicz, Marcin
    EPE: 2009 13TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS, VOLS 1-9, 2009, : 5708 - 5713
  • [3] Detection of broken rotor bar fault in an induction motor using convolution neural network
    Gundewar, Swapnil
    Kane, Prasad
    Andhare, Atul
    JOURNAL OF ADVANCED MECHANICAL DESIGN SYSTEMS AND MANUFACTURING, 2022, 16 (02):
  • [4] Induction Motor Rotor Fault Detection using Artificial Neural Network
    Patel, Rakeshkumar A.
    Bhalja, B. R.
    2015 INTERNATIONAL CONFERENCE ON ENERGY SYSTEMS AND APPLICATIONS, 2015, : 45 - 50
  • [5] Induction motor fault detection and diagnosis using supervised and unsupervised neural networks
    Premrudeepreechacharn, S
    Utthiyoung, T
    Kruepengkul, K
    Puongkaew, P
    IEEE ICIT' 02: 2002 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS I AND II, PROCEEDINGS, 2002, : 93 - 96
  • [6] Converter-fed Induction Motor Losses in Different Operating Points
    Karkkainen, Hannu
    Aarniovuori, Lassi
    Niemela, Markku
    Pyrhonen, Juha
    2016 18TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS (EPE'16 ECCE EUROPE), 2016,
  • [7] Stator Inter-Turn Fault Detection for the Converter-Fed Induction Motor Based on the Adjacent-Current Phase-Shift
    Liu, He
    Huang, Jin
    Cheng, Ming
    Hou, Zhaowen
    Zhao, Lihang
    2014 17TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS), 2014, : 981 - 987
  • [8] Converter-fed induction motor modelling with inter-turn stator faults
    Kowalski, Czeslaw T.
    Wierzbicki, Robert
    Wolkiewicz, Marcin
    PRZEGLAD ELEKTROTECHNICZNY, 2010, 86 (04): : 220 - 224
  • [9] CONVERTER-FED INDUCTION MOTOR DIAGNOSIS USING INSTANTANEOUS ELECTROMAGNETIC TORQUE AND POWER SIGNALS
    Kowalski, Czeslaw T.
    Wolkiewicz, Marcin
    EUROCON 2009: INTERNATIONAL IEEE CONFERENCE DEVOTED TO THE 150 ANNIVERSARY OF ALEXANDER S. POPOV, VOLS 1- 4, PROCEEDINGS, 2009, : 811 - +
  • [10] Rotor Fault Detection System for the Inverter Driven Induction Motor using Current Signals
    Kim, Nam-Hun
    Baik, Won-Sik
    Kim, Min-Huei
    Choi, Chang-Ho
    JOURNAL OF POWER ELECTRONICS, 2009, 9 (02) : 224 - 231