Copy number alterations detected by whole-exome and whole-genome sequencing of esophageal adenocarcinoma

被引:20
作者
Wang, Xiaoyu [1 ]
Li, Xiaohong [2 ,3 ]
Cheng, Yichen [3 ]
Sun, Xin [4 ]
Sun, Xibin [5 ]
Self, Steve [1 ]
Kooperberg, Charles [3 ]
Dai, James Y. [1 ,3 ]
机构
[1] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, Seattle, WA 98104 USA
[2] Fred Hutchinson Canc Res Ctr, Human Biol, Seattle, WA 98104 USA
[3] Fred Hutchinson Canc Res Ctr, Div Publ Hlth Sci, Seattle, WA 98104 USA
[4] Inst Occupat Hlth & Poison Control, Chinese Ctr Dis Control & Prevent, Beijing, Peoples R China
[5] Henan Canc Hosp, Henan Off Canc Res & Control, Zhengzhou, Henan, Peoples R China
基金
美国国家卫生研究院;
关键词
CLONAL EVOLUTION; CANCER; HETEROZYGOSITY; ABERRATIONS; INSTABILITY; PATTERNS; TOOLS;
D O I
10.1186/s40246-015-0044-0
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: Esophageal adenocarcinoma (EA) is among the leading causes of cancer mortality, especially in developed countries. A high level of somatic copy number alterations (CNAs) accumulates over the decades in the progression from Barrett's esophagus, the precursor lesion, to EA. Accurate identification of somatic CNAs is essential to understand cancer development. Many studies have been conducted for the detection of CNA in EA using microarrays. Next-generation sequencing (NGS) technologies are believed to have advantages in sensitivity and accuracy to detect CNA, yet no NGS-based CNA detection in EA has been reported. Results: In this study, we analyzed whole-exome (WES) and whole-genome sequencing (WGS) data for detecting CNA from a published large-scale genomic study of EA. Two specific comparisons were conducted. First, the recurrent CNAs based on WGS and WES data from 145 EA samples were compared to those found in five previous microarray-based studies. We found that the majority of the previously identified regions were also detected in this study. Interestingly, some novel amplifications and deletions were discovered using the NGS data. In particular, SKI and PRKCZ detected in a deletion region are involved in transforming growth factor-beta pathway, suggesting the potential utility of novel biomarkers for EA. Second, we compared CNAs detected in WGS and WES data from the same 15 EA samples. No large-scale CNA was identified statistically more frequently by WES or WGS, while more focal-scale CNAs were detected by WGS than by WES. Conclusions: Our results suggest that NGS can replace microarrays to detect CNA in EA. WGS is superior to WES in that it can offer finer resolution for the detection, though if the interest is on recurrent CNAs, WES can be preferable to WGS for its cost-effectiveness.
引用
收藏
页数:15
相关论文
共 47 条
[1]   CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing [J].
Abyzov, Alexej ;
Urban, Alexander E. ;
Snyder, Michael ;
Gerstein, Mark .
GENOME RESEARCH, 2011, 21 (06) :974-984
[2]   An Integrated Approach to Uncover Drivers of Cancer [J].
Akavia, Uri David ;
Litvin, Oren ;
Kim, Jessica ;
Sanchez-Garcia, Felix ;
Kotliar, Dylan ;
Causton, Helen C. ;
Pochanard, Panisa ;
Mozes, Eyal ;
Garraway, Levi A. ;
Pe'er, Dana .
CELL, 2010, 143 (06) :1005-1017
[3]   APPLICATIONS OF NEXT-GENERATION SEQUENCING Genome structural variation discovery and genotyping [J].
Alkan, Can ;
Coe, Bradley P. ;
Eichler, Evan E. .
NATURE REVIEWS GENETICS, 2011, 12 (05) :363-375
[4]   Comparative analysis of methods for identifying somatic copy number alterations from deep sequencing data [J].
Alkodsi, Amjad ;
Louhimo, Riku ;
Hautaniemi, Sampsa .
BRIEFINGS IN BIOINFORMATICS, 2015, 16 (02) :242-254
[5]   The landscape of somatic copy-number alteration across human cancers [J].
Beroukhim, Rameen ;
Mermel, Craig H. ;
Porter, Dale ;
Wei, Guo ;
Raychaudhuri, Soumya ;
Donovan, Jerry ;
Barretina, Jordi ;
Boehm, Jesse S. ;
Dobson, Jennifer ;
Urashima, Mitsuyoshi ;
Mc Henry, Kevin T. ;
Pinchback, Reid M. ;
Ligon, Azra H. ;
Cho, Yoon-Jae ;
Haery, Leila ;
Greulich, Heidi ;
Reich, Michael ;
Winckler, Wendy ;
Lawrence, Michael S. ;
Weir, Barbara A. ;
Tanaka, Kumiko E. ;
Chiang, Derek Y. ;
Bass, Adam J. ;
Loo, Alice ;
Hoffman, Carter ;
Prensner, John ;
Liefeld, Ted ;
Gao, Qing ;
Yecies, Derek ;
Signoretti, Sabina ;
Maher, Elizabeth ;
Kaye, Frederic J. ;
Sasaki, Hidefumi ;
Tepper, Joel E. ;
Fletcher, Jonathan A. ;
Tabernero, Josep ;
Baselga, Jose ;
Tsao, Ming-Sound ;
Demichelis, Francesca ;
Rubin, Mark A. ;
Janne, Pasi A. ;
Daly, Mark J. ;
Nucera, Carmelo ;
Levine, Ross L. ;
Ebert, Benjamin L. ;
Gabriel, Stacey ;
Rustgi, Anil K. ;
Antonescu, Cristina R. ;
Ladanyi, Marc ;
Letai, Anthony .
NATURE, 2010, 463 (7283) :899-905
[6]   Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data [J].
Boeva, Valentina ;
Popova, Tatiana ;
Bleakley, Kevin ;
Chiche, Pierre ;
Cappo, Julie ;
Schleiermacher, Gudrun ;
Janoueix-Lerosey, Isabelle ;
Delattre, Olivier ;
Barillot, Emmanuel .
BIOINFORMATICS, 2012, 28 (03) :423-425
[7]   Methods and strategies for analyzing copy number variation using DNA microarrays [J].
Carter, Nigel P. .
NATURE GENETICS, 2007, 39 (Suppl 7) :S16-S21
[8]   Absolute quantification of somatic DNA alterations in human cancer [J].
Carter, Scott L. ;
Cibulskis, Kristian ;
Helman, Elena ;
McKenna, Aaron ;
Shen, Hui ;
Zack, Travis ;
Laird, Peter W. ;
Onofrio, Robert C. ;
Winckler, Wendy ;
Weir, Barbara A. ;
Beroukhim, Rameen ;
Pellman, David ;
Levine, Douglas A. ;
Lander, Eric S. ;
Meyerson, Matthew ;
Getz, Gad .
NATURE BIOTECHNOLOGY, 2012, 30 (05) :413-+
[9]  
Chiang DY, 2009, NAT METHODS, V6, P99, DOI [10.1038/nmeth.1276, 10.1038/NMETH.1276]
[10]   Making sense of cancer genomic data [J].
Chin, Lynda ;
Hahn, William C. ;
Getz, Gad ;
Meyerson, Matthew .
GENES & DEVELOPMENT, 2011, 25 (06) :534-555