Stable Portfolio Selection Strategy for Mean-Variance-CVaR Model under High-Dimensional Scenarios
被引:0
作者:
Shi, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R ChinaShanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
Shi, Yu
[1
]
Zhao, Xia
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R ChinaShanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
Zhao, Xia
[1
]
Jiang, Fengwei
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R ChinaShanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
Jiang, Fengwei
[1
]
Zhu, Yipin
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R ChinaShanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
Zhu, Yipin
[1
]
机构:
[1] Shanghai Univ Int Business & Econ, Sch Stat & Informat, Shanghai 201620, Peoples R China
This paper aims to study stable portfolios with mean-variance-CVaR criteria for high-dimensional data. Combining different estimators of covariance matrix, computational methods of CVaR, and regularization methods, we construct five progressive optimization problems with short selling allowed. The impacts of different methods on out-of-sample performance of portfolios are compared. Results show that the optimization model with well-conditioned and sparse covariance estimator, quantile regression computational method for CVaR, and reweightedL1norm performs best, which serves for stabilizing the out-of-sample performance of the solution and also encourages a sparse portfolio.
机构:
Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USAPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
Brodie, Joshua
;
Daubechies, Ingrid
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
Princeton Univ, Dept Math, Princeton, NJ 08544 USAPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
Daubechies, Ingrid
;
De Mol, Christine
论文数: 0引用数: 0
h-index: 0
机构:
Univ Libre Bruxelles, Dept Math, European Ctr Adv Res Econ & Stat, B-1050 Brussels, BelgiumPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
De Mol, Christine
;
Giannone, Domenico
论文数: 0引用数: 0
h-index: 0
机构:
European Cent Bank, European Ctr Adv Res Econ & Stat, London EC1V ODG, England
Ctr Econ Policy Res, London EC1V ODG, EnglandPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
机构:
Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USAPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
Brodie, Joshua
;
Daubechies, Ingrid
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
Princeton Univ, Dept Math, Princeton, NJ 08544 USAPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
Daubechies, Ingrid
;
De Mol, Christine
论文数: 0引用数: 0
h-index: 0
机构:
Univ Libre Bruxelles, Dept Math, European Ctr Adv Res Econ & Stat, B-1050 Brussels, BelgiumPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA
De Mol, Christine
;
Giannone, Domenico
论文数: 0引用数: 0
h-index: 0
机构:
European Cent Bank, European Ctr Adv Res Econ & Stat, London EC1V ODG, England
Ctr Econ Policy Res, London EC1V ODG, EnglandPrinceton Univ, Program Appl & Computat Math, Princeton, NJ 08544 USA