Invariant measures on multimode quantum Gaussian states

被引:10
作者
Lupo, C. [1 ]
Mancini, S. [1 ,2 ]
De Pasquale, A. [3 ,4 ]
Facchi, P. [5 ,6 ,7 ]
Florio, G. [7 ,8 ,9 ,10 ,11 ]
Pascazio, S. [7 ,8 ,9 ]
机构
[1] Univ Camerino, Sch Sci & Technol, I-62032 Camerino, Italy
[2] Ist Nazl Fis Nucl, Sez Perugia, I-06123 Perugia, Italy
[3] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[4] Ist Nanosci CNR, I-56126 Pisa, Italy
[5] Univ Bari, Dipartimento Matemat, I-70125 Bari, Italy
[6] Univ Bari, MECENAS, I-70125 Bari, Italy
[7] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy
[8] Univ Bari, MECENAS, I-70126 Bari, Italy
[9] Univ Bari, Dipartimento Fis, I-70126 Bari, Italy
[10] Museo Stor Fis, I-00184 Rome, Italy
[11] Ctr Studi & Ric Enrico Fermi, I-00184 Rome, Italy
关键词
TYPICAL ENTANGLEMENT; COHERENT STATES; PURE STATES; ENTROPY; REPRESENTATION; INFORMATION; MECHANICS; SYSTEMS; FORMS;
D O I
10.1063/1.4768712
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive the invariant measure on the manifold of multimode quantum Gaussian states, induced by the Haar measure on the group of Gaussian unitary transformations. To this end, by introducing a bipartition of the system in two disjoint subsystems, we use a parameterization highlighting the role of nonlocal degrees of freedom-the symplectic eigenvalues-which characterize quantum entanglement across the given bipartition. A finite measure is then obtained by imposing a physically motivated energy constraint. By averaging over the local degrees of freedom we finally derive the invariant distribution of the symplectic eigenvalues in some cases of particular interest for applications in quantum optics and quantum information. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4768712]
引用
收藏
页数:19
相关论文
共 50 条
[21]   Differential Parametric Formalism for the Evolution of Gaussian States: Nonunitary Evolution and Invariant States [J].
Lopez-Saldivar, Julio A. ;
Man'ko, Margarita A. ;
Man'ko, Vladimir, I .
ENTROPY, 2020, 22 (05)
[22]   Optimal measurements for quantum fidelity between Gaussian states and its relevance to quantum metrology [J].
Oh, Changhun ;
Lee, Changhyoup ;
Banchi, Leonardo ;
Lee, Su-Yong ;
Rockstuhl, Carsten ;
Jeong, Hyunseok .
PHYSICAL REVIEW A, 2019, 100 (01)
[23]   Renyi α entropies of quantum states in closed form: Gaussian states and a class of non-Gaussian states [J].
Kim, Ilki .
PHYSICAL REVIEW E, 2018, 97 (06)
[24]   Gaussian quantum resource theories [J].
Lami, Ludovico ;
Regula, Bartosz ;
Wang, Xin ;
Nichols, Rosanna ;
Winter, Andreas ;
Adesso, Gerardo .
PHYSICAL REVIEW A, 2018, 98 (02)
[25]   Quantum fidelity measures for mixed states [J].
Liang, Yeong-Cherng ;
Yeh, Yu-Hao ;
Mendonca, Paulo E. M. F. ;
Teh, Run Yan ;
Reid, Margaret D. ;
Drummond, Peter D. .
REPORTS ON PROGRESS IN PHYSICS, 2019, 82 (07)
[26]   Quantum coherence of Gaussian states in curved spacetime [J].
Wu, Shu-Min ;
Zeng, Hao-Sheng ;
Liu, Tong-Hua .
RESULTS IN PHYSICS, 2019, 14
[27]   Asymmetric quantum hypothesis testing with Gaussian states [J].
Spedalieri, Gaetana ;
Braunstein, Samuel L. .
PHYSICAL REVIEW A, 2014, 90 (05)
[28]   Renyi relative entropies of quantum Gaussian states [J].
Seshadreesan, Kaushik P. ;
Lami, Ludovico ;
Wilde, Mark M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (07)
[29]   Geometry of perturbed Gaussian states and quantum estimation [J].
Genoni, Marco G. ;
Giorda, Paolo ;
Paris, Matteo G. A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (15)
[30]   Towards Gaussian states for loop quantum gravity [J].
Sahlmann, Hanno ;
Seeger, Robert .
PHYSICAL REVIEW D, 2020, 101 (10)