Highly efficient base editing in Staphylococcus aureus using an engineered CRISPR RNA-guided cytidine deaminase

被引:61
作者
Gu, Tongnian [1 ]
Zhao, Siqi [2 ,3 ]
Pi, Yishuang [1 ]
Chen, Weizhong [1 ]
Chen, Chuanyuan [2 ,3 ]
Liu, Qian [4 ]
Li, Min [4 ]
Han, Dali [2 ,3 ]
Ji, Quanjiang [1 ]
机构
[1] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Genom, Key Lab Genom & Precis Med, Beijing 100101, Peoples R China
[3] Univ Chinese Acad Sci, Coll Future Technol, Sino Danish Coll, Beijing 100049, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Med, Ren Ji Hosp, Dept Lab Med, Shanghai 200127, Peoples R China
基金
国家重点研发计划; 中国博士后科学基金; 中国国家自然科学基金;
关键词
DNA CLEAVAGE; GENOMIC DNA; CAS SYSTEMS; VIRULENCE; COLONIZATION; INFECTIONS;
D O I
10.1039/c8sc00637g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Novel therapeutic means against Staphylococcus aureus infections are urgently needed due to the emergence of drug-resistant S. aureus. We report the development of a CRISPR RNA-guided cytidine deaminase (pnCasSA-BEC), enabling highly efficient gene inactivation and point mutations in S. aureus. We engineered a fusion of a Cas9 nickase (Cas9D10A) and a cytidine deaminase (APOBEC1) that can be guided to a target genomic locus for gene inactivation via generating a premature stop codon. The pnCasSA-BEC system nicks the non-edited strand of the genomic DNA, directly catalyzes the conversion of cytidine (C) to uridine (U), and relies on DNA replication to achieve C T (G A) conversion without using donor repair templates. The development of the base-editing system will dramatically accelerate drug-target exploration in S. aureus and provides critical insights into the development of base-editing tools in other microbes.
引用
收藏
页码:3248 / 3253
页数:6
相关论文
共 35 条
  • [1] Staphylococcus aureus:: A well-armed pathogen
    Archer, GL
    [J]. CLINICAL INFECTIOUS DISEASES, 1998, 26 (05) : 1179 - 1181
  • [2] Allelic replacement in Staphylococcus aureus with inducible counter-selection
    Bae, T
    Schneewind, O
    [J]. PLASMID, 2006, 55 (01) : 58 - 63
  • [3] CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons
    Billon, Pierre
    Bryant, Eric E.
    Joseph, Sarah A.
    Nambiar, Tarun S.
    Hayward, Samuel B.
    Rothstein, Rodney
    Ciccia, Alberto
    [J]. MOLECULAR CELL, 2017, 67 (06) : 1068 - +
  • [4] Rapid and Efficient Genome Editing in Staphylococcus aureus by Using an Engineered CRISPR/Cas9 System
    Chen, Weizhong
    Zhang, Yifei
    Yeo, Won-Sik
    Bae, Taeok
    Ji, Quanjiang
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (10) : 3790 - 3795
  • [5] High-Efficiency Multiplex Genome Editing of Streptomyces Species Using an Engineered CRISPR/Cas System
    Cobb, Ryan E.
    Wang, Yajie
    Zhao, Huimin
    [J]. ACS SYNTHETIC BIOLOGY, 2015, 4 (06): : 723 - 728
  • [6] Multiplex Genome Engineering Using CRISPR/Cas Systems
    Cong, Le
    Ran, F. Ann
    Cox, David
    Lin, Shuailiang
    Barretto, Robert
    Habib, Naomi
    Hsu, Patrick D.
    Wu, Xuebing
    Jiang, Wenyan
    Marraffini, Luciano A.
    Zhang, Feng
    [J]. SCIENCE, 2013, 339 (6121) : 819 - 823
  • [7] Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems
    DiCarlo, James E.
    Norville, Julie E.
    Mali, Prashant
    Rios, Xavier
    Aach, John
    Church, George M.
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (07) : 4336 - 4343
  • [8] Golden Gate Shuffling: A One-Pot DNA Shuffling Method Based on Type IIs Restriction Enzymes
    Engler, Carola
    Gruetzner, Ramona
    Kandzia, Romy
    Marillonnet, Sylvestre
    [J]. PLOS ONE, 2009, 4 (05):
  • [9] Foster TJ, 1998, METHOD MICROBIOL, V27, P433
  • [10] DNA Mismatch Repair in Eukaryotes and Bacteria
    Fukui, Kenji
    [J]. JOURNAL OF NUCLEIC ACIDS, 2010, 2010