Applying semantic web technologies for phenome-wide scan using an electronic health record linked Biobank

被引:17
|
作者
Pathak, Jyotishman [1 ]
Kiefer, Richard C. [2 ]
Bielinski, Suzette J. [3 ]
Chute, Christopher G. [1 ]
机构
[1] Mayo Clin, Dept Hlth Sci Res, Div Biomed Stat & Informat, Rochester, MN 55905 USA
[2] Mayo Clin, Dept Informat Technol, Rochester, MN USA
[3] Mayo Clin, Div Epidemiol, Dept Hlth Sci Res, Rochester, MN USA
来源
JOURNAL OF BIOMEDICAL SEMANTICS | 2012年 / 3卷
关键词
MEDICAL-RECORDS; CANCER RISK; SERUM TSH; GENOME; ASSOCIATION; GENE; VARIANTS; HYPOTHYROIDISM; SUSCEPTIBILITY; POPULATION;
D O I
10.1186/2041-1480-3-10
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: The ability to conduct genome-wide association studies (GWAS) has enabled new exploration of how genetic variations contribute to health and disease etiology. However, historically GWAS have been limited by inadequate sample size due to associated costs for genotyping and phenotyping of study subjects. This has prompted several academic medical centers to form "biobanks" where biospecimens linked to personal health information, typically in electronic health records (EHRs), are collected and stored on a large number of subjects. This provides tremendous opportunities to discover novel genotype-phenotype associations and foster hypotheses generation. Results: In this work, we study how emerging Semantic Web technologies can be applied in conjunction with clinical and genotype data stored at the Mayo Clinic Biobank to mine the phenotype data for genetic associations. In particular, we demonstrate the role of using Resource Description Framework (RDF) for representing EHR diagnoses and procedure data, and enable federated querying via standardized Web protocols to identify subjects genotyped for Type 2 Diabetes and Hypothyroidism to discover gene-disease associations. Our study highlights the potential of Web-scale data federation techniques to execute complex queries. Conclusions: This study demonstrates how Semantic Web technologies can be applied in conjunction with clinical data stored in EHRs to accurately identify subjects with specific diseases and phenotypes, and identify genotype-phenotype associations.
引用
收藏
页数:17
相关论文
共 11 条
  • [1] Applying semantic web technologies for phenome-wide scan using an electronic health record linked Biobank
    Jyotishman Pathak
    Richard C Kiefer
    Suzette J Bielinski
    Christopher G Chute
    Journal of Biomedical Semantics, 3
  • [2] Quantifying the phenome-wide disease burden of obesity using electronic health records and genomics
    Robinson, Jamie R.
    Carroll, Robert J.
    Bastarache, Lisa
    Chen, Qingxia
    Pirruccello, James
    Mou, Zongyang
    Wei, Wei-Qi
    Connolly, John
    Mentch, Frank
    Crane, Paul K.
    Hebbring, Scott J.
    Crosslin, David R.
    Gordon, Adam S.
    Rosenthal, Elisabeth A.
    Stanaway, Ian B.
    Hayes, M. Geoffrey
    Wei, Wei
    Petukhova, Lynn
    Namjou-Khales, Bahram
    Zhang, Ge
    Safarova, Mayya S.
    Walton, Nephi A.
    Still, Christopher
    Bottinger, Erwin P.
    Loos, Ruth J. F.
    Murphy, Shawn N.
    Jackson, Gretchen P.
    Abumrad, Naji
    Kullo, Iftikhar J.
    Jarvik, Gail P.
    Larson, Eric B.
    Weng, Chunhua
    Roden, Dan
    Khera, Amit V.
    Denny, Joshua C.
    OBESITY, 2022, 30 (12) : 2477 - 2488
  • [3] Genome-wide and Phenome-wide Approaches to Understand Variable Drug Actions in Electronic Health Records
    Robinson, Jamie R.
    Denny, Joshua C.
    Roden, Dan M.
    Van Driest, Sara L.
    CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2018, 11 (02): : 112 - 122
  • [4] Systematic comparison of phenome-wide association study of electronic medical record data and genome-wide association study data
    Denny, Joshua C.
    Bastarache, Lisa
    Ritchie, Marylyn D.
    Carroll, Robert J.
    Zink, Raquel
    Mosley, Jonathan D.
    Field, Julie R.
    Pulley, Jill M.
    Ramirez, Andrea H.
    Bowton, Erica
    Basford, Melissa A.
    Carrell, David S.
    Peissig, Peggy L.
    Kho, Abel N.
    Pacheco, Jennifer A.
    Rasmussen, Luke V.
    Crosslin, David R.
    Crane, Paul K.
    Pathak, Jyotishman
    Bielinski, Suzette J.
    Pendergrass, Sarah A.
    Xu, Hua
    Hindorff, Lucia A.
    Li, Rongling
    Manolio, Teri A.
    Chute, Christopher G.
    Chisholm, Rex L.
    Larson, Eric B.
    Jarvik, Gail P.
    Brilliant, Murray H.
    McCarty, Catherine A.
    Kullo, Iftikhar J.
    Haines, Jonathan L.
    Crawford, Dana C.
    Masys, Daniel R.
    Roden, Dan M.
    NATURE BIOTECHNOLOGY, 2013, 31 (12) : 1102 - +
  • [5] PheW2P2V: a phenome-wide prediction framework with weighted patient representations using electronic health records
    Guo, Jia
    Kiryluk, Krzysztof
    Wang, Shuang
    JAMIA OPEN, 2024, 7 (03)
  • [6] Phenome-wide Mendelian-randomization study of genetically determined vitamin D on multiple health outcomes using the UK Biobank study
    Meng, Xiangrui
    Li, Xue
    Timofeeva, Maria N.
    He, Yazhou
    Spiliopoulou, Athina
    Wei, Wei-Qi
    Gifford, Aliya
    Wu, Hongjiang
    Varley, Timothy
    Joshi, Peter
    Denny, Joshua C.
    Farrington, Susan M.
    Zgaga, Lina
    Dunlop, Malcolm G.
    McKeigue, Paul
    Campbell, Harry
    Theodoratou, Evropi
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2019, 48 (05) : 1425 - 1434
  • [7] A phenome-wide association study of polygenic scores for attention deficit hyperactivity disorder across two genetic ancestries in electronic health record data
    Niarchou, Maria
    Sealock, Julia M.
    Straub, Peter
    Sanchez-Roige, Sandra
    Sutcliffe, James S.
    Davis, Lea K.
    AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2022, 189 (06) : 185 - 195
  • [8] Identifying the potential causal role of insomnia symptoms on 11,409 health-related outcomes: a phenome-wide Mendelian randomisation analysis in UK Biobank
    Gibson, Mark J.
    Lawlor, Deborah A.
    Millard, Louise A. C.
    BMC MEDICINE, 2023, 21 (01)
  • [9] Genetically Determined Chronic Low-Grade Inflammation and Hundreds of Health Outcomes in the UK Biobank and the FinnGen Population: A Phenome-Wide Mendelian Randomization Study
    Si, Shucheng
    Li, Jiqing
    Tewara, Marlvin Anemey
    Xue, Fuzhong
    FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [10] Variants Near FOXE1 Are Associated with Hypothyroidism and Other Thyroid Conditions: Using Electronic Medical Records for Genome- and Phenome-wide Studies
    Denny, Joshua C.
    Crawford, Dana C.
    Ritchie, Marylyn D.
    Bielinski, Suzette J.
    Basford, Melissa A.
    Bradford, Yuki
    Chai, High Seng
    Bastarache, Lisa
    Zuvich, Rebecca
    Peissig, Peggy
    Carrell, David
    Ramirez, Andrea H.
    Pathak, Jyotishman
    Wilke, Russell A.
    Rasmussen, Luke
    Wang, Xiaoming
    Pacheco, Jennifer A.
    Kho, Abel N.
    Hayes, M. Geoffrey
    Weston, Noah
    Matsumoto, Martha
    Kopp, Peter A.
    Newton, Katherine M.
    Jarvik, Gail P.
    Li, Rongling
    Manolio, Teri A.
    Kullo, Iftikhar J.
    Chute, Christopher G.
    Chisholm, Rex L.
    Larson, Eric B.
    McCarty, Catherine A.
    Masys, Daniel R.
    Roden, Dan M.
    de Andrade, Mariza
    AMERICAN JOURNAL OF HUMAN GENETICS, 2011, 89 (04) : 529 - 542