CONTINUOUSLY MONITORED BARRIER OPTIONS UNDER MARKOV PROCESSES

被引:69
作者
Mijatovic, Aleksandar [1 ]
Pistorius, Martijn [2 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
[2] Univ London Imperial Coll Sci Technol & Med, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
pricing algorithms; barrier options; continuous-time Markov chain; local volatility models with jumps; Levy processes; normal inverse Gaussian process; variance Gamma process; CGMY model; Sato processes; local Levy processes; MODEL; VOLATILITY; PRICES;
D O I
10.1111/j.1467-9965.2011.00486.x
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, we present an algorithm for pricing barrier options in one-dimensional Markov models. The approach rests on the construction of an approximating continuous-time Markov chain that closely follows the dynamics of the given Markov model. We illustrate the method by implementing it for a range of models, including a local Levy process and a local volatility jump-diffusion. We also provide a convergence proof and error estimates for this algorithm.
引用
收藏
页码:1 / 38
页数:38
相关论文
共 58 条
[1]   A STOCHASTIC VOLATILITY MODEL FOR RISK-REVERSALS IN FOREIGN EXCHANGE [J].
Albanese, Claudio ;
Mijatovic, Aleksandar .
INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2009, 12 (06) :877-899
[2]  
Andersen L., 2000, Review of derivatives research, V4, P231
[3]  
[Anonymous], 1999, CAMBRIDGE STUD ADV M
[4]  
[Anonymous], 2004, Internat. J. Theoret. Appl. Finance, DOI DOI 10.1142/S0219024904002451
[5]  
[Anonymous], 2004, INT J THEOR APPL FIN
[6]   A quantization tree method for pricing and hedging multidimensional American options [J].
Bally, V ;
Pagès, G ;
Printems, J .
MATHEMATICAL FINANCE, 2005, 15 (01) :119-168
[7]  
Barndorff-Nielsen O.E, 1997, Finance Stoch, V2, P41, DOI DOI 10.1007/S007800050032
[8]   VALUATION OF CONTINUOUSLY MONITORED DOUBLE BARRIER OPTIONS AND RELATED SECURITIES [J].
Boyarchenko, Mitya ;
Levendorskii, Sergei .
MATHEMATICAL FINANCE, 2012, 22 (03) :419-444
[9]  
Boyarchenko S.I., 2002, NONGAUSSIAN MERTON B, VVol. 9
[10]   A continuity correction for discrete barrier options [J].
Broadie, M ;
Glasserman, P ;
Kou, S .
MATHEMATICAL FINANCE, 1997, 7 (04) :325-349