Nitrogen-Doped Hollow Carbon Nanospheres Derived from Dopamine as High-Performance Anode Materials for Sodium-Ion Batteries

被引:14
作者
Yang, Yurong [1 ]
Qiu, Min [1 ]
Liu, Li [1 ]
Su, Dan [2 ]
Pi, Yanmei [1 ]
Yan, Guomin [1 ]
机构
[1] Heihe Univ, Coll Sci, Xueyuan Rd 1, Heihe 164300, Peoples R China
[2] Heihe Univ, Coll Comp & Informat Engn, Xueyuan Rd 1, Heihe 164300, Peoples R China
关键词
Nitrogen-doped carbon materials; hollow carbon nanospheres; anode; sodium-ion battery; LITHIUM-ION; RATE CAPABILITY; NANOFIBERS; STORAGE; ELECTRODE; OXIDE; LIFE;
D O I
10.1142/S1793292016501241
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Designed as an anode material for sodium ion batteries, porous nitrogen-doped hollow carbon nanospheres (N-HCS, D = 200 nm) are successfully synthesized via the mature template-assisted method using silica and dopamine as template and carbon precursor, respectively. For detailed characterization of Raman, FTIR and XPS results, it is revealed that N-doping can form a disordered carbon structure and induce a large number of topological defects on carbon outer wall. The N-HCS electrode exhibits excellent cycling stability and rate capability, delivering a satisfying capacity of 306mAh g(-1) over 600 cycles at a discharging rate of 0.05A g(-1) and an attainable capacity of 188mAh g(-1) even at a high discharging rate of 3.0A g(-1). The excellent electrochemical performance of N-HCS can be attributed to the high content of pores. Moreover, the high content of pyridinic and graphitic N could facilitate the transfer of sodium ion and electron.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Optimizing sodium storage mechanisms and electrochemical performance of high Nitrogen-Doped hard carbon anode materials Derived from waste plastics for Sodium-Ion batteries
    Zhang, Pan
    Shu, Yirui
    Zhong, Benhe
    Yang, Lin
    Guo, Xiaodong
    CHEMICAL ENGINEERING JOURNAL, 2024, 498
  • [22] Nitrogen-Rich Mesoporous Carbon as Anode Material for High-Performance Sodium-Ion Batteries
    Liu, Huan
    Jia, Mengqiu
    Sun, Ning
    Cao, Bin
    Chen, Renjie
    Zhu, Qizhen
    Wu, Feng
    Qiao, Ning
    Xu, Bin
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (49) : 27124 - 27130
  • [23] A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries
    Liu, Pin
    Li, Yunming
    Hu, Yong-Sheng
    Li, Hong
    Chen, Liquan
    Huang, Xuejie
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (34) : 13046 - 13052
  • [24] Interlayer-expanded MoS 2 nanosheets/nitrogen-doped carbon as a high-performance anode for sodium -ion batteries
    Yao, Zhongran
    Zhu, Kongjun
    Li, Xia
    Wang, Jing
    Yan, Kang
    Liu, Jinsong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 838
  • [25] Porous nitrogen doped carbon sphere as high performance anode of sodium-ion battery
    Li, Dongdong
    Chen, Hongbin
    Liu, Guoxue
    Wei, Meng
    Ding, Liang-xin
    Wang, Suqing
    Wang, Haihui
    CARBON, 2015, 94 : 888 - 894
  • [26] Low-Cost and High-Performance Hard Carbon Anode Materials for Sodium-Ion Batteries
    Wang, Kun
    Jin, Yu
    Sun, Shixiong
    Huang, Yangyang
    Peng, Jian
    Luo, Jiahuan
    Zhang, Qin
    Qiu, Yuegang
    Fang, Chun
    Han, Jiantao
    ACS OMEGA, 2017, 2 (04): : 1687 - 1695
  • [27] Iron diselenide combined with hollow graphitic carbon nanospheres as a high-performance anode material for sodium-ion batteries
    Park, Jin-Sung
    Jeong, Sun Young
    Jeon, Kyung Min
    Kang, Yun Chan
    Cho, Jung Sang
    CHEMICAL ENGINEERING JOURNAL, 2018, 339 : 97 - 107
  • [28] Nitrogen-doped mesoporous hollow carbon nanoflowers as high performance anode materials of lithium ion batteries
    Qian, Chen
    Guo, Ping
    Zhang, Xiue
    Zhao, Rongfang
    Wu, Qianhui
    Huan, Long
    Shen, Xiao
    Chen, Ming
    RSC ADVANCES, 2016, 6 (96): : 93519 - 93524
  • [29] Hard carbon derived from waste tea biomass as high-performance anode material for sodium-ion batteries
    Pei, Linyuan
    Cao, Hailiang
    Yang, Liangtao
    Liu, Peizhi
    Zhao, Min
    Xu, Bingshe
    Guo, Junjie
    IONICS, 2020, 26 (11) : 5535 - 5542
  • [30] Sawdust-derived hard carbon as a high-performance anode for sodium-ion batteries
    Jiaxu Wang
    Fangyu Li
    Yuansen Duan
    Huachao Tao
    Xuelin Yang
    Ionics, 2023, 29 : 2311 - 2318