Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe

被引:194
|
作者
Lenoir, Jonathan [1 ,2 ]
Graae, Bente Jessen [3 ]
Aarrestad, Per Arild [4 ]
Alsos, Inger Greve [5 ]
Armbruster, W. Scott [3 ,6 ,7 ]
Austrheim, Gunnar [8 ]
Bergendorff, Claes [9 ]
Birks, H. John B. [10 ,11 ,12 ]
Brathen, Kari Anne [13 ]
Brunet, Jorg [14 ]
Bruun, Hans Henrik [15 ]
Dahlberg, Carl Johan [16 ]
Decocq, Guillaume [2 ]
Diekmann, Martin [17 ]
Dynesius, Mats [18 ]
Ejrnaes, Rasmus [19 ]
Grytnes, John-Arvid [10 ]
Hylander, Kristoffer [16 ]
Klanderud, Kari [10 ,20 ]
Luoto, Miska [21 ]
Milbau, Ann [22 ]
Moora, Mari [23 ]
Nygaard, Bettina [19 ]
Odland, Arvid [24 ]
Ravolainen, Virve Tuulia [13 ]
Reinhardt, Stefanie [24 ]
Sandvik, Sylvi Marlen [25 ]
Schei, Fride Hoistad [26 ]
Speed, James David Mervyn [8 ]
Tveraabak, Liv Unn [27 ]
Vandvik, Vigdis [10 ]
Velle, Liv Guri [28 ]
Virtanen, Risto [29 ]
Zobel, Martin [23 ]
Svenning, Jens-Christian [1 ]
机构
[1] Aarhus Univ, Dept Biosci, Ecoinformat & Biodivers Grp, DK-8000 Aarhus C, Denmark
[2] Jules Verne Univ Picardie, Plant Biodivers Lab, Ecol & Dynam Syst Anthropises EA 4698, FR-80037 Amiens, France
[3] Norwegian Univ Sci & Technol NTNU, Dept Biol, NO-7491 Trondheim, Norway
[4] Norwegian Inst Nat Res, NO-7485 Trondheim, Norway
[5] Tromso Univ Museum, NO-9000 Tromso, Norway
[6] Univ Portsmouth, Sch Biol Sci, Portsmouth PO1 2DY, Hants, England
[7] Univ Alaska, Inst Arctic Biol, Fairbanks, AK 99775 USA
[8] Norwegian Univ Sci & Technol, Museum Nat Hist & Archaeol, NO-7491 Trondheim, Norway
[9] Malmo Museer, SE-20124 Malmo, Sweden
[10] Univ Bergen, Dept Biol, Ecol & Environm Change Res Grp, NO-5020 Bergen, Norway
[11] UCL, Environm Change Res Ctr, London WC1E 6BT, England
[12] Univ Oxford, Sch Geog & Environm, Oxford OX1 3QY, England
[13] Univ Tromso, Dept Arctic & Marine Biol, NO-9037 Tromso, Norway
[14] Swedish Univ Agr Sci, Southern Swedish Forest Res Ctr, SE-23053 Alnarp, Sweden
[15] Univ Copenhagen, Dept Biol, Ctr Macroecol Evolut & Climate, DK-2100 Copenhagen O, Denmark
[16] Stockholm Univ, Dept Bot, SE-10691 Stockholm, Sweden
[17] Univ Bremen, Inst Ecol FB 2, DE-28359 Bremen, Germany
[18] Umea Univ, Dept Ecol & Environm Sci, SE-90187 Umea, Sweden
[19] Aarhus Univ, Dept Biosci, DK-8410 Ronde, Denmark
[20] Norwegian Univ Life Sci, Dept Ecol & Nat Resource Management, NO-1432 As, Norway
[21] Univ Helsinki, Dept Geosci & Geog, FI-00014 Helsinki, Finland
[22] Umea Univ, Dept Ecol & Environm Sci, Climate Impacts Res Ctr, SE-98107 Abisko, Sweden
[23] Univ Tartu, Inst Ecol & Earth Sci, EE-51005 Tartu, Estonia
[24] Telemark Univ Coll, NO-3800 Bo, Norway
[25] Univ Agder, Fac Engn & Sci, NO-4604 Kristiansand, Norway
[26] Norwegian Forest & Landscape Inst, NO-5244 Fana, Norway
[27] Univ Tromso, Dept Educ, NO-9037 Tromso, Norway
[28] Norwegian Inst Agr & Environm Res, NO-6967 Fureneset, Hellevik, Norway
[29] Univ Oulu, Dept Biol, FI-90014 Oulu, Finland
关键词
climate change; climatic heterogeneity; community-inferred temperature; Ellenberg indicator value; plant community; spatial heterogeneity; spatial scale; temperature; topoclimate; topography; STEPPE TRANSITION; MODELS; REGRESSION; DIVERSITY; MOUNTAIN; DYNAMICS; TERRAIN; AREA;
D O I
10.1111/gcb.12129
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Recent studies from mountainous areas of small spatial extent (<2500km2) suggest that fine-grained thermal variability over tens or hundreds of metres exceeds much of the climate warming expected for the coming decades. Such variability in temperature provides buffering to mitigate climate-change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within <1000-m2 units (community-inferred temperatures: CiT). We then assessed: (1) CiT range (thermal variability) within 1-km2 units; (2) the relationship between CiT range and topographically and geographically derived predictors at 1-km resolution; and (3) whether spatial turnover in CiT is greater than spatial turnover in GiT within 100-km2 units. Ellenberg temperature indicator values in combination with plant assemblages explained 4672% of variation in LmT and 9296% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km2 units peaked at 6065 degrees N and increased with terrain roughness, averaging 1.97 degrees C (SD=0.84 degrees C) and 2.68 degrees C (SD=1.26 degrees C) within the flattest and roughest units respectively. Complex interactions between topography-related variables and latitude explained 35% of variation in growing-season CiT range when accounting for sampling effort and residual spatial autocorrelation. Spatial turnover in growing-season CiT within 100-km2 units was, on average, 1.8 times greater (0.32 degrees Ckm1) than spatial turnover in growing-season GiT (0.18 degrees Ckm1). We conclude that thermal variability within 1-km2 units strongly increases local spatial buffering of future climate warming across Northern Europe, even in the flattest terrains.
引用
收藏
页码:1470 / 1481
页数:12
相关论文
empty
未找到相关数据