FEATURE AND COMPUTATIONAL TIME REDUCTION ON HAND BIOMETRIC SYSTEM

被引:0
|
作者
Travieso, Carlos M. [1 ]
Sole-Casals, Jordi [2 ]
Ferrer, Miguel A. [1 ]
Alonso, Jesus B. [1 ]
机构
[1] Univ Las Palmas Gran Canaria, Technol Ctr Innovat Communnicat, Signals & Commun Dept, Campus Tafira Sn,Ed Telecomuncac,Pabellon B, E-35017 Las Palmas Gran Canaria, Spain
[2] Univ Vic, Digital Technol Grp, Digital & Informat Technol Dept, E-08500 Barcelona, Spain
来源
BIOSIGNALS 2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON BIO-INSPIRED SYSTEMS AND SIGNAL PROCESSING | 2010年
关键词
Principal Component Analysis; Pattern Recognition; Hand Biometric System; Parameterization; Feature reduction; Classification system;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In real-time biometric systems, computational time is a critical and important parameter. In order to improve it, simpler systems are necessary but without loosing classification rates. In this present work, we explore how to improve the characteristics of a hand biometric system by reducing the computational time. For this task, neural network-multi layer Perceptron (NN-MLP) are used instead of original Hidden Markov Model (HMM) system and classical Principal Component Analysis (PCA) procedure is combined with MLP in order to obtain better results. As showed in the experiments, the new proposed PCA+MLP system achieves same success rate while computational time is reduced from 247 seconds (HMM case) to 7.3 seconds.
引用
收藏
页码:367 / 372
页数:6
相关论文
共 50 条
  • [1] Analysis and Benchmarking of feature reduction for classification under computational constraints
    Subasi, Omer
    Ghosh, Sayan
    Manzano, Joseph
    Palmer, Bruce
    Marquez, Andres
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02):
  • [2] Hand motions recognition based on sEMG nonlinear feature and time domain feature fusion
    Li J.
    Li G.
    Sun Y.
    Jiang G.
    Tao B.
    Xu S.
    International Journal of Innovative Computing and Applications, 2019, 10 (01) : 43 - 50
  • [3] Artificial database expansion based on hand position variability for palm vein biometric system
    Stanuch, Maciej
    Skalski, Andrzej
    2018 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), 2018, : 108 - 113
  • [4] Biometric hand tremor identification on graphics tablet
    Selivanova, Karina G.
    Avrunin, Oleg G.
    Kobylianskyi, Oleksandr V.
    Palamarchuk, Mykhaylo I.
    Lyashenko, Artem V.
    Omiotek, Zbigniew
    Syzdykpayeva, Aigul
    PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS 2019, 2019, 11176
  • [5] A Recognition System for Partially Occluded Dorsal Hand Vein Using Improved Biometric Graph Matching
    Liu, Fu
    Jiang, Shoukun
    Kang, Bing
    Hou, Tao
    IEEE ACCESS, 2020, 8 : 74525 - 74534
  • [6] Iris Feature Extraction as a Biometric Identification Mechanism
    Valencia Murillo, Jose Fernando
    Cruz Ardila, Juan Carlos
    Caicedo Marmolejo, Luis Felipe
    Chamorro Carvajal, Carlos E.
    REVISTA VIRTUAL UNIVERSIDAD CATOLICA DEL NORTE, 2014, 42 : 182 - 196
  • [7] Biometric Identifier Based on Hand and Hand-Written Signature Contour Information
    Pitters-Figueroa, Fernando A.
    Travieso, Carlos M.
    Dutta, Malay Kishore
    Singh, Anushikha
    2017 TENTH INTERNATIONAL CONFERENCE ON CONTEMPORARY COMPUTING (IC3), 2017, : 43 - 48
  • [8] Convolutional neural network with improved feature ranking for robust multi-modal biometric system
    Gona, Anilkumar
    Subramoniam, M.
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 101
  • [9] Multispectral hand features for secure biometric authentication systems
    Bartuzi, Ewelina
    Trokielewicz, Mateusz
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2021, 33 (18):
  • [10] A real-time EMG pattern recognition system based on linear-nonlinear feature projection for a multifunction myoelectric hand
    Chu, Jun-Uk
    Moon, Inhyuk
    Mun, Mu-Seong
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (11) : 2232 - 2239