Targeting mitochondrial oxidative metabolism as an approach to treat heart failure

被引:109
|
作者
Fillmore, Natasha [1 ]
Lopaschuk, Gary D. [1 ]
机构
[1] Univ Alberta, Cardiovasc Res Ctr, Mazankowski Alberta Heart Inst, Edmonton, AB T6G 2S2, Canada
来源
关键词
Heart failure; Glycolysis; Mitochondria; Fatty acid oxidation; Glucose oxidation; Carnitine palmitoyltransferase 1; FATTY-ACID OXIDATION; MALONYL-COA DECARBOXYLASE; PYRUVATE-DEHYDROGENASE COMPLEX; LEFT-VENTRICULAR FUNCTION; COENZYME-A THIOLASE; IDIOPATHIC DILATED CARDIOMYOPATHY; MAGNETIC-RESONANCE SPECTROSCOPY; RANDOMIZED CONTROLLED-TRIAL; CARDIAC ENERGY-METABOLISM; HYPERTROPHIED RAT HEARTS;
D O I
10.1016/j.bbamcr.2012.08.014
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heart failure is a major cause of morbidity and mortality in the world. Cardiac energy metabolism, specifically fatty acid and glucose metabolism, is altered in heart failure and has been implicated as a contributing factor in the impaired heart function observed in heart failure patients. There is emerging evidence demonstrating that correcting these changes in energy metabolism by modulating mitochondrial oxidative metabolism may be an effective treatment for heart failure. Promising strategies include the downregulation of fatty acid oxidation and an increased coupling of glycolysis to glucose oxidation. Carnitine palmitoyl transferase I (CPT1), fatty acid beta-oxidation enzymes, and pyruvate dehydrogenase kinase (PDK) are examples of metabolic targets for the treatment of heart failure. While targeting mitochondrial oxidative metabolism is a promising strategy to treat heart failure, further studies are needed to confirm the potential beneficial effect of modulating these metabolic targets as an approach to treating heart failure. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:857 / 865
页数:9
相关论文
共 50 条
  • [21] Cardiac lipid metabolism, mitochondrial function, and heart failure
    Da Dalt, Lorenzo
    Cabodevilla, Ainara G.
    Goldberg, Ira J.
    Norata, Giuseppe Danilo
    CARDIOVASCULAR RESEARCH, 2023, 119 (10) : 1905 - 1914
  • [22] Mitochondrial energy metabolism in heart failure: a question of balance
    Huss, JM
    Kelly, DP
    JOURNAL OF CLINICAL INVESTIGATION, 2005, 115 (03): : 547 - 555
  • [23] Targeting NOS as a therapeutic approach for heart failure
    Tang, Lifei
    Wang, Honglan
    Ziolo, Mark T.
    PHARMACOLOGY & THERAPEUTICS, 2014, 142 (03) : 306 - 315
  • [24] Targeting the Cardiac Myofibroblast Secretome to Treat Myocardial Fibrosis in Heart Failure
    Weber, Karl T.
    Diez, Javier
    CIRCULATION-HEART FAILURE, 2016, 9 (08)
  • [25] Targeting Obesity and Diabetes to Treat Heart Failure with Preserved ejection Fraction
    Altara, Raffaele
    Giordano, Mauro
    Norden, Einar S.
    Cataliotti, Alessandro
    Kurdi, Mazen
    Bajestani, Saeed N.
    Booz, George W.
    FRONTIERS IN ENDOCRINOLOGY, 2017, 8
  • [26] Targeting metabolism to treat psoriasis
    Paul Hiebert
    Sabine Werner
    Nature Medicine, 2018, 24 : 537 - 539
  • [27] Targeting the Brain Leptin-Melanocortin Pathway to Treat Heart Failure
    Omoto, Ana C. M.
    do Carmo, Jussara M.
    Mouton, Alan J.
    Wang, Zhen
    Li, Xuan
    Spitz, Robert
    Hall, John E.
    da Silva, Alexandre A.
    CURRENT HYPERTENSION REPORTS, 2025, 27 (01)
  • [28] Targeting metabolism to treat psoriasis
    Hiebert, Paul
    Werner, Sabine
    NATURE MEDICINE, 2018, 24 (05) : 537 - 539
  • [29] Targeting Mitochondrial Fission-Fusion Imbalance in Heart Failure
    Thiago N. Menezes
    Lisley S. Ramalho
    Luiz R. G. Bechara
    Julio Cesar Batista Ferreira
    Current Tissue Microenvironment Reports, 2020, 1 (4): : 239 - 247
  • [30] Targeting Mitochondrial Function in Heart Failure Makes Sense But Will it Work?
    Khan, Muhammad Shahzeb
    Butler, Javed
    JACC-BASIC TO TRANSLATIONAL SCIENCE, 2019, 4 (02): : 158 - 160