Benefiting from multitask learning to improve single image super-resolution

被引:12
|
作者
Rad, Mohammad Saeed [1 ]
Bozorgtabar, Behzad [1 ]
Musat, Claudiu [2 ]
Marti, Urs-Viktor [2 ]
Basler, Max [2 ]
Ekenel, Hazim Kemal [1 ,3 ]
Thiran, Jean-Philippe [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Signal Proc Lab 5, Lausanne, Switzerland
[2] Swisscom AG, AI Lab, Lausanne, Switzerland
[3] Istanbul Tech Univ, Istanbul, Turkey
关键词
Single image super-resolution; Multitask learning; Recovering realistic textures; Semantic segmentation; Generative adversarial network; CONVOLUTIONAL NETWORK;
D O I
10.1016/j.neucom.2019.07.107
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite significant progress toward super resolving more realistic images by deeper convolutional neural networks (CNNs), reconstructing fine and natural textures still remains a challenging problem. Recent works on single image super resolution (SISR) are mostly based on optimizing pixel and content wise similarity between recovered and high-resolution (HR) images and do not benefit from recognizability of semantic classes. In this paper, we introduce a novel approach using categorical information to tackle the SISR problem; we present an encoder architecture able to extract and use semantic information to super-resolve a given image by using multitask learning, simultaneously for image super-resolution and semantic segmentation. To explore categorical information during training, the proposed decoder only employs one shared deep network for two task-specific output layers. At run-time only layers resulting HR image are used and no segmentation label is required. Extensive perceptual experiments and a user study on images randomly selected from COCO-Stuff dataset demonstrate the effectiveness of our proposed method and it outperforms the state-of-the-art methods. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:304 / 313
页数:10
相关论文
共 50 条
  • [21] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Jin-Chang Ren
    Xin-Ying Xu
    Sophia Zhao
    Gang Xie
    Valentin Masero
    Amir Hussain
    International Journal of Automation and Computing, 2019, 16 : 413 - 426
  • [22] Single Image Super-Resolution Based on Incoherent Dictionary Learning
    Wang, Junhua
    Liao, Xiaofang
    Li, Jianjun
    Li, Junshan
    PROCEEDINGS OF 2018 IEEE 9TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2018, : 555 - 558
  • [23] Single-image super-resolution via local learning
    Yi Tang
    Pingkun Yan
    Yuan Yuan
    Xuelong Li
    International Journal of Machine Learning and Cybernetics, 2011, 2 : 15 - 23
  • [24] Learning a Mixture of Deep Networks for Single Image Super-Resolution
    Liu, Ding
    Wang, Zhaowen
    Nasrabadi, Nasser
    Huang, Thomas
    COMPUTER VISION - ACCV 2016, PT III, 2017, 10113 : 145 - 156
  • [25] Deep Learning Based Single Image Super-resolution: A Survey
    Viet Khanh Ha
    Ren, Jin-Chang
    Xu, Xin-Ying
    Zhao, Sophia
    Xie, Gang
    Masero, Valentin
    Hussain, Amir
    INTERNATIONAL JOURNAL OF AUTOMATION AND COMPUTING, 2019, 16 (04) : 413 - 426
  • [26] Deep Learning Based Single Image Super-Resolution: A Survey
    Khanh Ha, Viet
    Ren, Jinchang
    Xu, Xinying
    Zhao, Sophia
    Xie, Gang
    Masero Vargas, Valentin
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 106 - 119
  • [27] Learning Dynamic Generative Attention for Single Image Super-Resolution
    Chen, Rui
    Zhang, Yan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (12) : 8368 - 8382
  • [28] Recent Advances in Deep Learning for Single Image Super-Resolution
    Zhang, Yungang
    Xiang, Yu
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 85 - 95
  • [29] Fast Learning-Based Single Image Super-Resolution
    Kumar, Neeraj
    Sethi, Amit
    IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (08) : 1504 - 1515
  • [30] EXTERNAL AND INTERNAL LEARNING FOR SINGLE-IMAGE SUPER-RESOLUTION
    Wang, Shuang
    Lin, Shaopeng
    Liang, Xuefeng
    Yue, Bo
    Jiao, Licheng
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 128 - 132