C-series discrete chains

被引:7
作者
Habibullin, IT [1 ]
机构
[1] Russian Acad Sci, Inst Math, Ufa Sci Ctr, Ufa, Russia
基金
俄罗斯基础研究基金会;
关键词
discrete Toda chains; integrable boundary conditions; discrete hyperbolic equations; Laplace invariants; Lax pair; simple Lie algebras;
D O I
10.1007/s11232-006-0017-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find analogues of the generalized two-dimensional Toda chains of the C-N and (C) over tilde (N) series with three discrete independent variables and give Lax pairs for these chains.
引用
收藏
页码:170 / 182
页数:13
相关论文
共 10 条
[1]  
DARBOUX G, 1915, LECONS THEORIE GENER, V2
[2]   Truncations of Toda chains and the reduction problem [J].
Habibullin, IT .
THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 143 (01) :515-528
[3]   DISCRETE ANALOG OF A GENERALIZED TODA EQUATION [J].
HIROTA, R .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1981, 50 (11) :3785-3791
[4]   Finite-dimensional discrete systems integrated in quadratures [J].
Kazakova, TG .
THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 138 (03) :356-369
[5]   INTEGRABLE 3-DIMENSIONAL LATTICES [J].
LEVI, D ;
PILLONI, L ;
SANTINI, PM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (07) :1567-1575
[6]  
LEZNOV AN, 1985, GROUP THEORETICAL ME
[7]   Discrete spectral symmetries of low-dimensional differential operators and difference operators on regular lattices and two-dimensional manifolds [J].
Novikov, SP ;
Dynnikov, IA .
RUSSIAN MATHEMATICAL SURVEYS, 1997, 52 (05) :1057-1116
[8]  
Suris Y.B., 1991, LENINGRAD MATH J, V2, P339
[9]   DISCRETE TODA FIELD-EQUATIONS [J].
WARD, RS .
PHYSICS LETTERS A, 1995, 199 (1-2) :45-48
[10]   Hirota's difference equations [J].
Zabrodin, AV .
THEORETICAL AND MATHEMATICAL PHYSICS, 1997, 113 (02) :1347-1392