Some New Generalization of Darbo's Fixed Point Theorem and Its Application on Integral Equations

被引:30
作者
Das, Anupam [1 ]
Hazarika, Bipan [1 ,2 ]
Kumam, Poom [3 ]
机构
[1] Rajiv Gandhi Univ, Dept Math, Rono Hills, Doimukh 791112, Arunachal Prade, India
[2] Gauhati Univ, Dept Math, Gauhati 781014, Assam, India
[3] KMUTT, Fac Sci, Dept Math, MUTTFixed Point Res Lab, Room SCL 802 Fixed Point Lab,Sci Lab Bldg, Bangkok 10140, Thailand
来源
MATHEMATICS | 2019年 / 7卷 / 03期
关键词
measure of noncompactness; functional integral equations; Darbo fixed point theorem; EXISTENCE; SYSTEMS;
D O I
10.3390/math7030214
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we propose some new fixed point theorem involving measure of noncompactness and control function. Further, we prove the existence of a solution of functional integral equations in two variables by using this fixed point theorem in Banach Algebra, and also illustrate the results with the help of an example.
引用
收藏
页数:9
相关论文
共 17 条
[1]  
AGARWAL RP, 2004, FIXED POINT THEORY A, V169
[2]   A generalization of Darbo's theorem with application to the solvability of systems of integral equations [J].
Aghajani, A. ;
Allahyari, R. ;
Mursaleen, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 260 :68-77
[3]  
[Anonymous], 1930, Fund. Math, DOI DOI 10.4064/FM-15-1-301-309
[4]   Existence of solutions of infinite systems of integral equations in two variables via measure of noncompactness [J].
Arab, Reza ;
Allahyari, Reza ;
Haghighi, Ali Shole .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 246 :283-291
[5]  
Bana J., 1980, LECT NOTES PURE APPL, V60
[6]  
Bana J., 2009, J ANAL APPL, V28, P1, DOI DOI 10.4171/ZAA/1394
[7]  
Banas J., 2002, Panam. Math. J, V12, P101
[8]  
Banas J., 2001, Comment. Math., V41, P13
[9]  
Darbo G., 1955, Rend. Sem. Mat. Univ. Padova, V24, P84
[10]   Some Simultaneous Generalizations of Well-Known Fixed Point Theorems and Their Applications to Fixed Point Theory [J].
Du, Wei-Shih ;
Karapinar, Erdal ;
He, Zhenhua .
MATHEMATICS, 2018, 6 (07)