Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels

被引:145
作者
Wen, DS [1 ]
Ding, YL [1 ]
机构
[1] Univ Leeds, Inst Particle Sci & Engn, Leeds LS2 9JT, W Yorkshire, England
关键词
nanoparticles; nanofluids; particle migration; heat transfer;
D O I
10.1007/s10404-004-0027-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
ecent work has shown that suspensions of highly thermally conducting nanoparticles with a size considerably smaller than 100 nm have great potential as a high-energy carrier for small channel systems. However, it is also known that particles in a suspension under certain conditions may migrate. This indicates that the efficiency of heat transfer in the small channels may not be as superior as expected, which bears significance to the system design and operation. This work aims at addressing this issue by examining the effect of particle migration on heat transfer under a fully developed laminar flow regime in small channels. This involves the development of both flow and heat transfer models, and a numerical solution to the models. The flow model takes into account the effects of the shear-induced and viscosity-gradient-induced particle migration, as well as self-diffusion due to Brownian motion, which is coupled with an energy equation. The results suggest a significant non-uniformity in particle concentration and, hence, thermal conductivity over the tube cross-section due to particle migration, particularly for large particles at high concentrations. Compared with the constant thermal conductivity assumption, the non-uniform distribution due to particle migration leads to a higher Nusselt number, which depends on the Peclet number and the mean particle concentration. Further improvement of the model is needed to take into account other factors such as entrance effects, as well as the dynamics of particles and particle-wall interactions.
引用
收藏
页码:183 / 189
页数:7
相关论文
共 26 条
[1]   AUGMENTATION OF HEAT TRANSPORT IN LAMINAR-FLOW OF POLYSTYRENE SUSPENSIONS .2. ANALYSIS OF DATA [J].
AHUJA, AS .
JOURNAL OF APPLIED PHYSICS, 1975, 46 (08) :3417-3425
[2]   EFFECT OF BROWNIAN-MOTION ON BULK STRESS IN A SUSPENSION OF SPHERICAL-PARTICLES [J].
BATCHELOR, GK .
JOURNAL OF FLUID MECHANICS, 1977, 83 (NOV) :97-117
[3]   Exponential formula for computing effective viscosity [J].
Cheng, NS ;
Law, AWK .
POWDER TECHNOLOGY, 2003, 129 (1-3) :156-160
[4]  
Choi S.U.S., 1995, ASME, P99
[5]   Pool boiling characteristics of nano-fluids [J].
Das, SK ;
Putra, N ;
Roetzel, W .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2003, 46 (05) :851-862
[6]  
Eastman J. A., 1999, Materials Science Forum, V312-314, P629, DOI 10.4028/www.scientific.net/MSF.312-314.629
[7]   Nonuniform temperature distribution in electronic devices cooled by flow in parallel microchannels [J].
Hetsroni, G ;
Mosyak, A ;
Segal, Z .
IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2001, 24 (01) :16-23
[8]   Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) [J].
Keblinski, P ;
Phillpot, SR ;
Choi, SUS ;
Eastman, JA .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2002, 45 (04) :855-863
[9]   Measuring thermal conductivity of fluids containing oxide nanoparticles [J].
Lee, S ;
Choi, SUS ;
Li, S ;
Eastman, JA .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1999, 121 (02) :280-289
[10]   THE SHEAR-INDUCED MIGRATION OF PARTICLES IN CONCENTRATED SUSPENSIONS [J].
LEIGHTON, D ;
ACRIVOS, A .
JOURNAL OF FLUID MECHANICS, 1987, 181 :415-439