On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function

被引:183
作者
Wu, TF [1 ]
机构
[1] So Taiwan Univ Technol, Ctr Gen Educ, Tainan 71005, Taiwan
关键词
semilinear elliptic equations; Nehari manifold; concave-convex nonlinearities;
D O I
10.1016/j.jmaa.2005.05.057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the combined effect of concave and convex nonlinearities on the number of positive solutions for semilinear elliptic equations with a sign-changing weight function. With the help of the Nehari manifold, we prove that there are at least two positive solutions for Eq. (E-lambda,E-f) in bounded domains. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:253 / 270
页数:18
相关论文
共 16 条
[11]   Exact multiplicity of positive solutions for a class of semilinear problem, II [J].
Ouyang, TC ;
Shi, JP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 158 (01) :94-151
[12]  
Rabinowitz PH, 1986, REGIONAL C SER MATH
[14]   Exact multiplicity for semilinear elliptic Dirichlet problems involving concave and convex nonlinearities [J].
Tang, MX .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :705-717
[15]   ON NONHOMOGENEOUS ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENT [J].
TARANTELLO, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1992, 9 (03) :281-304