On the Minimum Variable Connectivity Index of Unicyclic Graphs with a Given Order

被引:1
作者
Yousaf, Shamaila [1 ,2 ]
Bhatti, Akhlaq Ahmad [1 ]
Ali, Akbar [3 ,4 ]
机构
[1] Natl Univ Comp & Emerging Sci, Dept Sci & Humanities, Lahore Campus, Lahore, Pakistan
[2] Univ Gujrat, Dept Math, Hafiz Hayat Campus, Gujrat, Pakistan
[3] Univ Hail, Coll Sci, Hail 81451, Saudi Arabia
[4] Univ Management & Technol, Knowledge Unit Sci, Sialkot, Pakistan
关键词
TOPOLOGICAL INDEXES; (1)CHI(F); HISTORY; BOUNDS; QSAR; TOOL;
D O I
10.1155/2020/1217567
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The variable connectivity index, introduced by the chemist Milan Randic in the first quarter of 1990s, for a graph G is defined as Sigma(vw is an element of E(G))((d(v) + gamma)(d(w) + gamma))(-1/2), where gamma is a non-negative real number and d(w) is the degree of a vertex w in G. We call this index as the variable Randic index and denote it by R-v(gamma). In this paper, we show that the graph created from the star graph of order n by adding an edge has the minimum R-v(gamma) value among all unicyclic graphs of a fixed order n, for every n >= 4 and gamma >= 0.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] The greatest values for atom-bond sum-connectivity index of graphs with given parameters
    Li, Fengwei
    Ye, Qingfang
    Lu, Huajing
    DISCRETE APPLIED MATHEMATICS, 2024, 344 : 188 - 196
  • [32] On the extremal graphs for general sum-connectivity index (χα) with given cyclomatic number when α > 1
    Ali, Akbar
    Dimitrov, Darko
    Du, Zhibin
    Ishfaq, Faiza
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 19 - 30
  • [33] Minimal Harary index of unicyclic graphs with diameter at most 4
    Feng, Lihua
    Li, Ziyuan
    Liu, Weijun
    Lu, Lu
    Stevanovic, Dragan
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 381
  • [34] The degree Kirchhoff index of fully loaded unicyclic graphs and cacti
    Feng, Lihua
    Liu, Weijun
    Yu, Guihai
    Li, Shudong
    UTILITAS MATHEMATICA, 2014, 95 : 149 - 159
  • [35] Extremal reformulated forgotten index of trees, unicyclic and bicyclic graphs
    Sarkar, Ishita
    Nanjappa, Manjunath
    Gutman, Ivan
    FILOMAT, 2024, 38 (01) : 25 - 32
  • [36] General multiplicative Zagreb indices of trees and unicyclic graphs with given matching number
    Vetrik, Tomas
    Balachandran, Selvaraj
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 40 (04) : 953 - 973
  • [37] Unicyclic and bicyclic graphs with maximum exponential second Zagreb index
    Eliasi, Mehdi
    DISCRETE APPLIED MATHEMATICS, 2022, 307 : 172 - 179
  • [39] Augmented Zagreb index of trees and unicyclic graphs with perfect matchings
    Sun, Xiaoling
    Gao, Yubin
    Du, Jianwei
    Xu, Lan
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 335 : 75 - 81
  • [40] On the Reformulated Multiplicative First Zagreb Index of Trees and Unicyclic Graphs
    Ali, Akbar
    Nadeem, Atif
    Raza, Zahid
    Mohammed, Wael W.
    Elsayed, Elsayed M.
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021