Probing the influence of graphene oxide sheets size on the performance of label-free electrochemical biosensors

被引:28
|
作者
Eissa, Shimaa [1 ,2 ,3 ]
N'diaye, Jeanne [1 ]
Brisebois, Patrick [1 ]
Izquierdo, Ricardo [1 ]
Tavares, Ana C. [2 ]
Siaj, Mohamed [1 ]
机构
[1] Univ Quebec Montreal, Dept Chim & Biochim, QCAM CQMF, NanoQAM, Montreal, PQ H3C 3P8, Canada
[2] Inst Natl Rech Sci Energie Mat & Telecommun, 1650 Boul Lionel Boulet, Varennes, PQ J3X 1S2, Canada
[3] Alfaisal Univ, Dept Chem, Al Zahrawi St,Al Takhassusi Rd, Riyadh 11533, Saudi Arabia
关键词
SENSITIVE DETECTION; CARBON; IMMUNOSENSOR; REDUCTION; INSIGHTS; DENSITY;
D O I
10.1038/s41598-020-70384-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The integration of graphene materials into electrochemical biosensing platforms has gained significant interest in recent years. Bulk quantities of graphene can be synthesized by oxidation of graphite to graphite oxide and subsequent exfoliation to graphene oxide (GO). However, the size of the resultant GO sheets changes from the parent graphite yielding a polydispersed solution of sizes ranging from a few nanometers to tens of micrometers. Here, we investigate the direct effect of GO sheets sizes on biosensor performance. We separated different GO sheets sizes, and we characterized them via atomic force, scanning electron, Raman and X-ray photoelectron spectroscopies and solid state nuclear magnetic resonance (NMR). As proof of concept, the sensing performance of these GO samples was probed using a well-known ssDNA aptasensor against microcystin-LR toxin and an immunosensor against beta -lactoglobulin. The resulting aptasensors and immunosensors are fabricated by using covalent attachment and physical adsorption. We found that the aptasensors fabricated using physical adsorption, the binding signal variation was dramatically increased with increasing the GO sheet size. In contrast, for the aptasensor fabricated using covalent immobilization, the binding signal variation decreased with increasing GO sheet size. However, for the beta -lactoglobulin immunosensors, the optimum signals were observed at intermediate GO sheet size. GO sheet size could enhance or inhibit the sensitivity of the graphene-based electrochemical sensors. Our results demonstrate that controlling the size of GO sheets may have a profound impact in specific biosensing applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A label-free immunosensor based on PHEMA/graphene oxide nanocomposite for simultaneous electrochemical determination of alpha fetoprotein
    Liang, Ying
    Zhao, Xiaoqing
    Wang, Na
    Wang, Jing
    Chen, Hou
    Bai, Liangjiu
    Wang, Wenxiang
    RSC ADVANCES, 2019, 9 (30) : 17187 - 17193
  • [42] Microwave biosensors for label-free bacteria detection
    Piekarz, Ilona
    Sorocki, Jakub
    Gorska, Sabina
    Wincza, Krzysztof
    Gruszczynski, Slawomir
    2023 IEEE MTT-S INTERNATIONAL MICROWAVE BIOMEDICAL CONFERENCE, IMBIOC, 2023, : 109 - 111
  • [43] Label-free biosensors show early promise
    Morrow, K. John, Jr.
    GENETIC ENGINEERING & BIOTECHNOLOGY NEWS, 2007, 27 (04): : 16 - +
  • [44] Nanophotonic label-free biosensors for environmental monitoring
    Chocarro-Ruiz, Blanca
    Fernandez-Gavela, Adrian
    Herranz, Sonia
    Lechuga, Laura M.
    CURRENT OPINION IN BIOTECHNOLOGY, 2017, 45 : 175 - 183
  • [45] Electrochemical properties of Rubpy-reduced graphene oxide synergized by ultrasonication for label-free quercetin sensing
    Arumugasamy, Shiva Kumar
    Kanagavalli, Pandiayaraj
    Veerapandian, Murugan
    Jayaraman, Mathiyarasu
    Yun, Kyusik
    APPLIED SURFACE SCIENCE, 2021, 537
  • [46] Fabrication of an imprinted polymer based graphene oxide composite for label-free electrochemical sensing of Sus DNA
    Mughal, Zaib Un Nisa
    Shaikh, Huma
    Baig, Jamil Ahmed
    Memon, Shahabuddin
    Sirajuddin
    Shah, Shahnila
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (34) : 16509 - 16522
  • [47] A label-free electrochemical immunosensor based on gold nanoparticles and graphene oxide for the detection of tumor marker calcitonin
    Alarfaj, Nawal A.
    El-Tohamy, Maha F.
    NEW JOURNAL OF CHEMISTRY, 2017, 41 (19) : 11029 - 11035
  • [48] An electrochemical label-free and sensitive thrombin aptasensor based on graphene oxide modified pencil graphite electrode
    Ahour, F.
    Ahsani, M. K.
    BIOSENSORS & BIOELECTRONICS, 2016, 86 : 764 - 769
  • [49] Electrochemical label-free and sensitive nanobiosensing of DNA hybridization by graphene oxide modified pencil graphite electrode
    Ahour, F.
    Shamsi, A.
    ANALYTICAL BIOCHEMISTRY, 2017, 532 : 64 - 71
  • [50] Label-free impedance biosensors: Opportunities and challenges
    Daniels, Jonathan S.
    Pourmand, Nader
    ELECTROANALYSIS, 2007, 19 (12) : 1239 - 1257