A pivoting procedure for a class of second-order cone programming

被引:9
|
作者
Muramatsu, M [1 ]
机构
[1] Univ Electrocommun, Chofu, Tokyo 1828585, Japan
来源
OPTIMIZATION METHODS & SOFTWARE | 2006年 / 21卷 / 02期
关键词
second-order cone programming; pivoting methods;
D O I
10.1080/10556780500094697
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a pivoting procedure for a class of second-order cone programming (SOCP) problems having one second-order cone, but possibly with additional non-negative variables. We introduce a dictionary, basic variables, nonbasic variables, and other necessary concepts to define a pivot for this class of SOCP problems. In a pivot, two-dimensional SOCP subproblems are solved to decide which variables should be entering or leaving the basis. Under a nondegeneracy assumption, we prove that the objective function value is strictly decreasing by a pivot unless the current basic solution is optimal. We also propose an algorithm using the pivoting procedure which has a global convergence property.
引用
收藏
页码:295 / 314
页数:20
相关论文
共 50 条
  • [31] IDG accommodation based on second-order cone programming
    Xing H.
    Cheng H.
    Zeng P.
    Zhang Y.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2016, 36 (06): : 74 - 80
  • [32] Restoration of matrix fields by second-order cone programming
    G. Steidl
    S. Setzer
    B. Popilka
    B. Burgeth
    Computing, 2007, 81 : 161 - 178
  • [33] Code Generation for Embedded Second-Order Cone Programming
    Chu, Eric
    Parikh, Neal
    Domahidi, Alexander
    Boyd, Stephen
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 1547 - 1552
  • [34] Stochastic second-order cone programming: Applications models
    Alzalg, Baha M.
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (10) : 5122 - 5134
  • [35] Perturbation analysis of second-order cone programming problems
    J. Frédéric Bonnans
    Héctor Ramírez C.
    Mathematical Programming, 2005, 104 : 205 - 227
  • [36] A Variant of the Simplex Method for Second-Order Cone Programming
    Zhadan, Vitaly
    MATHEMATICAL OPTIMIZATION THEORY AND OPERATIONS RESEARCH, 2019, 11548 : 115 - 129
  • [37] SVM training: Second-order cone programming versus quadratic programming
    Debnath, Rameswar
    Takahashi, Haruhisa
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 1162 - +
  • [38] Optimal design of archgrids: the second-order cone programming perspective
    Dzierzanowski, Grzegorz
    Hetmanski, Krzysztof
    ARCHIVES OF CIVIL ENGINEERING, 2021, 67 (04) : 469 - 486
  • [39] Interior point methods for second-order cone programming and OR applications
    Kuo, YJ
    Mittelmann, HD
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2004, 28 (03) : 255 - 285
  • [40] A Second-Order Cone Programming Method for Multiuser Detection Problem
    Xuewen Mu
    Yaling Zhang
    Wireless Personal Communications, 2011, 60 : 335 - 344