A CAD System for Breast Cancer Diagnosis Using Modified Genetic Algorithm Optimized Artificial Neural Network

被引:0
作者
Dheeba, J. [1 ]
Selvi, S. Tamil [2 ]
机构
[1] Noorul Islam Univ, Dept Comp Sci & Engn, Kumaracoil, TN, India
[2] Natl Engn Coll, Dept Elect & Commun Engn, Kovilpatti, TN, India
来源
SWARM, EVOLUTIONARY, AND MEMETIC COMPUTING, PT I | 2011年 / 7076卷
关键词
Microcalcification; Mammograms; Computer Aided Detection; Neural Network; Texture Energy Measures; Genetic Algorithm; CLUSTERED MICROCALCIFICATIONS; AUTOMATIC DETECTION; CLASSIFICATION; MASS; SEGMENTATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper. a computerized scheme for automatic detection of cancerous tumors in mammograms has been examined. Diagnosis of breast tumors at the early stage is a very difficult task as the cancerous tumors are embedded in normal breast tissue structures. This paper proposes a supervised machine learning algorithm - Modified Genetic Algorithm (MGA) tuned Artificial Neural Network for detection of tumors in mammograms. Genetic Algorithm is a population based optimization algorithm based on the principle of natural evolution. By utilizing the MGA, the parameters of the Artificial Neural Network (ANN) are optimized. To increase the detection accuracy a feature extraction methodology is used to extract the texture features of the cancerous tissues and normal tissues prior to classification. Then Modified Genetic Algorithm (MGA) tuned Artificial Neural Network classifier is applied at the end to determine whether a given input data is suspicious for tumor or not. The performance of our computerized scheme is evaluated using a database of 322 mammograms originated from MIAS databases. The result shows that the proposed algorithm has a recognition score of 97.8%.
引用
收藏
页码:349 / +
页数:3
相关论文
共 18 条
  • [1] [Anonymous], 1994, DIGITAL MAMMO, DOI DOI 10.1007/S11999-016-4732-4
  • [2] Mammogram segmentation by contour searching and mass lesions classification with neural network
    Cascio, D.
    Fauci, F.
    Magro, R.
    Raso, G.
    Bellotti, R.
    De Carlo, F.
    Tangaro, S.
    De Nunzio, G.
    Quarta, M.
    Forni, G.
    Lauria, A.
    Fantacci, M. E.
    Retico, A.
    Masala, G. L.
    Oliva, P.
    Bagnasco, S.
    Cheran, S. C.
    Torres, E. Lopez
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (05) : 2827 - 2833
  • [3] Chen Y, 2004, P ANN INT IEEE EMBS, V26, P1275
  • [4] Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels
    Chiang, CL
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (04) : 1690 - 1699
  • [5] Multifeature texture analysis for the classification of clouds in satellite imagery
    Christodoulou, CI
    Michaelides, SC
    Pattichis, CS
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2003, 41 (11): : 2662 - 2668
  • [6] Dheeba J., 2010, 2010 International Conference on Communication Control and Computing Technologies, P554, DOI 10.1109/ICCCCT.2010.5670778
  • [7] On Combining Morphological Component Analysis and Concentric Morphology Model for Mammographic Mass Detection
    Gao, Xinbo
    Wang, Ying
    Li, Xuelong
    Tao, Dacheng
    [J]. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2010, 14 (02): : 266 - 273
  • [8] Breast Cancer Diagnosis: Analyzing Texture of Tissue Surrounding Microcalcifications
    Karahaliou, Anna N.
    Boniatis, Ioannis S.
    Skiadopoulos, Spyros G.
    Sakellaropoulos, Filippos N.
    Arikidis, Nikolaos S.
    Likaki, Eleni A.
    Panayiotakis, George S.
    Costaridou, Lena I.
    [J]. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2008, 12 (06): : 731 - 738
  • [9] Kim JK, 1999, IEEE T MED IMAGING, V18, P231, DOI 10.1109/42.764896
  • [10] Scale-space signatures for the detection of clustered microcalcifications in digital mammograms
    Netsch, T
    Peitgen, HO
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 1999, 18 (09) : 774 - 786