Distributionally Robust Sampling-Based Motion Planning Under Uncertainty

被引:0
作者
Summers, Tyler [1 ]
机构
[1] Univ Texas Dallas, Richardson, TX 75083 USA
来源
2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS) | 2018年
关键词
OPTIMIZATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a distributionally robust incremental sampling-based method for kinodynamic motion planning under uncertainty, which we call distributionally robust RRT (DR-RRT). In contrast to many approaches that assume Gaussian distributions for uncertain parameters, here we consider moment-based ambiguity sets of distributions with given mean and covariance. Chance constraints for obstacle avoidance and internal state bounds are then enforced under the worst-case distribution in the ambiguity set, which gives a coherent assessment of constraint violation risks. The method generates risk-bounded trajectories and feedback control laws for robots operating in dynamic, cluttered, and uncertain environments, explicitly incorporating localization error, stochastic process disturbances, unpredictable obstacle motion, and uncertain obstacle location. We show that the algorithm is probabilistically complete under mild assumptions. Numerical experiments illustrate the effectiveness of the algorithm.
引用
收藏
页码:6518 / 6523
页数:6
相关论文
共 33 条
[1]   FIRM: Sampling-based feedback motion-planning under motion uncertainty and imperfect measurements [J].
Agha-mohammadi, Ali-akbar ;
Chakravorty, Suman ;
Amato, Nancy M. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2014, 33 (02) :268-304
[2]  
[Anonymous], INFOTECHAEROSPACE 20
[3]  
[Anonymous], 2012, ROBOT MOTION PLANNIN
[4]  
[Anonymous], 2006, Planning algorithms
[5]  
[Anonymous], MATH PROGRAMMING
[6]  
[Anonymous], MATH PROGRAMMING
[7]   Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patterns [J].
Aoude, Georges S. ;
Luders, Brandon D. ;
Joseph, Joshua M. ;
Roy, Nicholas ;
How, Jonathan P. .
AUTONOMOUS ROBOTS, 2013, 35 (01) :51-76
[8]   Chance-Constrained Optimal Path Planning With Obstacles [J].
Blackmore, Lars ;
Ono, Masahiro ;
Williams, Brian C. .
IEEE TRANSACTIONS ON ROBOTICS, 2011, 27 (06) :1080-1094
[9]   A Probabilistic Particle-Control Approximation of Chance-Constrained Stochastic Predictive Control [J].
Blackmore, Lars ;
Ono, Masahiro ;
Bektassov, Askar ;
Williams, Brian C. .
IEEE TRANSACTIONS ON ROBOTICS, 2010, 26 (03) :502-517
[10]  
Bry A, 2011, IEEE INT CONF ROBOT