Inhibition of RNA polymerase II transcription in human cell extracts by cisplatin DNA damage

被引:71
作者
Cullinane, C
Mazur, SJ
Essigmann, JM
Phillips, DR
Bohr, VA [1 ]
机构
[1] NIA, Mol Genet Lab, Baltimore, MD 21224 USA
[2] La Trobe Univ, Dept Biochem, Bundoora, Vic 3083, Australia
[3] MIT, Dept Chem, Cambridge, MA 02139 USA
[4] MIT, Div Bioengn & Environm Hlth, Cambridge, MA 02139 USA
关键词
D O I
10.1021/bi982685+
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The anticancer drug cisplatin induces a spectrum of lesions in DNA. The effect of such DNA damage on transcription by RNA polymerase II (RNA pol II) in human cell extracts was investigated at the level of initiation and elongation. RNA pol II transcription directed from the adenovirus major late promoter was inhibited following treatment of the promoter-containing template with increasing concentrations of cisplatin. Furthermore, transcription from an undamaged promoter fragment was depleted in the presence of increasing amounts of cisplatin DNA damage on an exogenous plasmid, suggesting such damage may hijack an essential factor for transcription initiation. The effect of cisplatin damage on RNA pol II elongation was investigated using site-specifically-placed cisplatin adducts. The GTG adduct was an effective block to RNA pol II elongation, inhibiting the polymerase by 80%. In contrast, RNA pol II completely bypassed the cisplatin GG intrastrand adduct. These studies suggest that the inhibition of RNA pol II transcription observed following the treatment of cells with cisplatin is likely to reflect the combined effects of DNA damage at the level of both transcription initiation and elongation.
引用
收藏
页码:6204 / 6212
页数:9
相关论文
共 56 条