A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one

被引:0
|
作者
Nourdin, Ivan [1 ]
机构
[1] Univ Paris 06, Lab Probabil & Modeles Aleatories, F-75252 Paris 5, France
来源
SEMINAIRE DE PROBABILITES XLI | 2008年 / 1934卷
关键词
stochastic differential equation; fractional Brownian motion; Russo-Vallois integrals; Newton-Cotes functional; approximation schemes; Doss-Sussmann transformation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We will focus - in dimension one - on the SDEs of the type dX(t) = sigma(X-t)dB(t) + b(X-t) dt where B is a fractional Brownian motion. Our principal aim is to describe a simple theory - from our point of view - allowing to study this SDE, and this for any H is an element of (0, 1). We will consider several definitions of solutions and, for each of them, study conditions under which one has existence and/or uniqueness. Finally, we will examine whether or not the canonical scheme associated to our SDE converges, when the integral with respect to fBm is defined using the Russo-Vallois symmetric integral.
引用
收藏
页码:181 / 197
页数:17
相关论文
共 50 条
  • [1] On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion
    Nourdin, I
    Simon, T
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (09) : 907 - 912
  • [2] Viability for Coupled SDEs Driven by Fractional Brownian Motion
    Li, Zhi
    Xu, Liping
    Zhou, Jie
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (SUPPL 1): : S55 - S98
  • [3] Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion
    Hairer, M.
    Pillai, N. S.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (02): : 601 - 628
  • [4] Viability for Coupled SDEs Driven by Fractional Brownian Motion
    Zhi Li
    Liping Xu
    Jie Zhou
    Applied Mathematics & Optimization, 2021, 84 : 55 - 98
  • [5] Viability for Coupled SDEs Driven by Fractional Brownian Motion
    Li, Zhi
    Xu, Liping
    Zhou, Jie
    Applied Mathematics and Optimization, 2021, 84 : 55 - 98
  • [6] Distribution dependent SDEs driven by additive fractional Brownian motion
    Lucio Galeati
    Fabian A. Harang
    Avi Mayorcas
    Probability Theory and Related Fields, 2023, 185 : 251 - 309
  • [7] Distribution dependent SDEs driven by additive fractional Brownian motion
    Galeati, Lucio
    Harang, Fabian A.
    Mayorcas, Avi
    PROBABILITY THEORY AND RELATED FIELDS, 2023, 185 (1-2) : 251 - 309
  • [8] Harnack inequalities for SDEs driven by subordinator fractional Brownian motion
    Li, Zhi
    Yan, Litan
    STATISTICS & PROBABILITY LETTERS, 2018, 134 : 45 - 53
  • [9] HARNACK INEQUALITIES FOR FUNCTIONAL SDES DRIVEN BY SUBORDINATE FRACTIONAL BROWNIAN MOTION
    LI, Z. H. I.
    Peng, Y. A. R. O. N. G.
    Yan, L. I. T. A. N.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2022, 16 (04): : 1429 - 1453
  • [10] Harnack inequalities and applications for functional SDEs driven by fractional Brownian motion
    Li, Zhi
    Luo, Jiaowan
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2014, 22 (04) : 213 - 226