A simple theory for the study of SDEs driven by a fractional Brownian motion, in dimension one

被引:0
作者
Nourdin, Ivan [1 ]
机构
[1] Univ Paris 06, Lab Probabil & Modeles Aleatories, F-75252 Paris 5, France
来源
SEMINAIRE DE PROBABILITES XLI | 2008年 / 1934卷
关键词
stochastic differential equation; fractional Brownian motion; Russo-Vallois integrals; Newton-Cotes functional; approximation schemes; Doss-Sussmann transformation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We will focus - in dimension one - on the SDEs of the type dX(t) = sigma(X-t)dB(t) + b(X-t) dt where B is a fractional Brownian motion. Our principal aim is to describe a simple theory - from our point of view - allowing to study this SDE, and this for any H is an element of (0, 1). We will consider several definitions of solutions and, for each of them, study conditions under which one has existence and/or uniqueness. Finally, we will examine whether or not the canonical scheme associated to our SDE converges, when the integral with respect to fBm is defined using the Russo-Vallois symmetric integral.
引用
收藏
页码:181 / 197
页数:17
相关论文
共 36 条
[1]   Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 1/2 [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 86 (01) :121-139
[2]  
Alòs E, 2001, TAIWAN J MATH, V5, P609
[3]   SDE solutions, at small times, driven by fractional Brownian motions [J].
Baudoin, F ;
Coutin, L .
COMPTES RENDUS MATHEMATIQUE, 2005, 341 (01) :39-42
[4]   An Ito formula for generalized functionals of a fractional Brownian motion with arbitrary Hurst parameter [J].
Bender, C .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 104 (01) :81-106
[5]  
BOUFOUSSI B, 2005, REV ROUMAINE MATH PU, V50, P125
[6]   Stochastic integration with respect to fractional Brownian motion [J].
Carmona, P ;
Coutin, L .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (03) :231-236
[7]   Stochastic analysis, rough path analysis and fractional Brownian motions [J].
Coutin, L ;
Qian, ZM .
PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (01) :108-140
[8]   Stochastic analysis of the fractional Brownian motion [J].
Decreusefond, L ;
Üstünel, AS .
POTENTIAL ANALYSIS, 1999, 10 (02) :177-214
[9]  
DOSS H, 1977, ANN I H POINCARE B, V13, P99
[10]  
Ducan TE, 2000, SIAM J CONTROL OPTIM, V38, P582