Anharmonic Thermal Oscillations of the Electron Momentum Distribution in Lithium Fluoride

被引:33
|
作者
Erba, A. [1 ,2 ]
Maul, J. [1 ,2 ,3 ]
Itou, M. [4 ]
Dovesi, R. [1 ,2 ]
Sakurai, Y. [4 ]
机构
[1] Univ Turin, Dipartimento Chim, IT-10125 Turin, Italy
[2] Univ Turin, Ctr Excellence NIS Nanostruct Interfaces & Surfac, IT-10125 Turin, Italy
[3] Univ Fed Paraiba, INCTMN UFPB, Lab Combustiveis & Mat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[4] Japan Synchrotron Radiat Res Inst, Sayo, Hyogo 6795198, Japan
关键词
ANISOTROPIC COMPTON-SCATTERING; TEMPERATURE-DEPENDENT SPIN; AB-INITIO; DENSITY; LIF; PROFILES; APPROXIMATION; MAGNETIZATION; EXPANSION; ATOMS;
D O I
10.1103/PhysRevLett.115.117402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Anharmonic thermal effects on the electron momentum distribution of a lithium fluoride single crystal are experimentally measured through high-resolution Compton scattering and theoretically modeled with ab initio simulations, beyond the harmonic approximation to the lattice potential, explicitly accounting for thermal expansion. Directional Compton profiles are measured at two different temperatures, 10 and 300 K, with a high momentum space resolution (0.10 a.u. in full width at half maximum), using synchrotron radiation. The effect of temperature on measured directional Compton profiles is clearly revealed by oscillations extending almost up to vertical bar p vertical bar = 4 a.u:, which perfectly match those predicted from quantum-mechanical simulations. The wave-function-based Hartree-Fock method and three classes of the Kohn-Sham density functional theory (local-density, generalized-gradient, and hybrid approximations) are adopted. The lattice thermal expansion, as described with the quasiharmonic approach, is found to entirely account for the effect of temperature on the electron momentum density within the experimental accuracy.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] THE ELECTRON MOMENTUM DISTRIBUTION IN SCANDIUM METAL
    PANIGRAHI, BB
    MOHAPATRA, NC
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1993, 5 (45) : 8557 - 8562
  • [22] ELECTRON-MOMENTUM DISTRIBUTION IN ZIRCONIUM
    SHARMA, BK
    AHUJA, BL
    PHYSICAL REVIEW B, 1988, 38 (05): : 3148 - 3151
  • [23] VALENCE ELECTRON MOMENTUM DISTRIBUTION IN GE
    BHOKARE, VV
    SINGRU, RM
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1976, 74 (02): : K161 - K163
  • [24] Fermiology via the electron momentum distribution
    Kontrym-Sznajd, G.
    LOW TEMPERATURE PHYSICS, 2009, 35 (8-9) : 599 - 609
  • [25] Fermiology via the electron momentum distribution
    Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wroclaw 2, Poland
    Fiz Nizk Temp, 2009, 8-9 (765-778):
  • [26] ELECTRON MOMENTUM DISTRIBUTION IN METALLIC VANADIUM
    SINGRU, RM
    MANUEL, AA
    SINGH, AK
    WALKER, E
    JARLBORG, T
    PETER, M
    PECORA, L
    EHRLICH, A
    CHEMICA SCRIPTA, 1986, 26 (03): : 501 - 501
  • [27] ELECTRON MOMENTUM DISTRIBUTION IN MG METAL
    MANNINEN, S
    PAAKKARI, T
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1981, 44 (01): : 127 - 135
  • [28] MOMENTUM DISTRIBUTION OF AN INTERACTING ELECTRON GAS
    DANIEL, E
    VOSKO, SH
    PHYSICAL REVIEW, 1960, 120 (06): : 2041 - 2044
  • [29] ELECTRON MOMENTUM DISTRIBUTION IN POLYCRYSTALLINE IRON
    FELSTEINER, J
    FOX, R
    KAHANE, S
    SOLID STATE COMMUNICATIONS, 1971, 9 (08) : 457 - +
  • [30] Electron momentum distribution in underdoped cuprates
    Ramsak, A
    Sega, I
    Prelovsek, P
    PHYSICAL REVIEW B, 2000, 61 (07) : 4389 - 4392