共 50 条
Molecular Engineering of Monodisperse SnO2 Nanocrystals Anchored on Doped Graphene with High-Performance Lithium/Sodium-Storage Properties in Half/Full Cells
被引:187
|作者:
Wang, Heng-guo
[1
,2
]
Wu, Qiong
[2
]
Wang, Yinghui
[1
]
Wang, Xiao
[3
]
Wu, Lanlan
[1
]
Song, Shuyan
[1
]
Zhang, Hongjie
[1
]
机构:
[1] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Jilin, Peoples R China
[2] Changchun Univ Sci & Technol, Sch Mat Sci & Engn, Changchun 130022, Jilin, Peoples R China
[3] Nanyang Technol Univ, Sch Chem & Biomed Engn, 62 Nanyang Dr, Singapore 637459, Singapore
基金:
中国国家自然科学基金;
关键词:
alkali metal ion batteries;
doped graphene;
full cells;
molecular engineering;
SnO2;
NA-ION BATTERIES;
ANODE MATERIALS;
RATE CAPABILITY;
NANOWIRES;
COMPOSITE;
NANOPARTICLES;
NANOSPHERES;
NANOFIBERS;
ELECTRODES;
NANOSHEETS;
D O I:
10.1002/aenm.201802993
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The fabrication of ultrasmall and high-content SnO2 nanocrystals anchored on doped graphene can endow SnO2 with superior electrochemical properties. Herein, an effective strategy, involving molecular engineering of a layer-by-layer assembly technique, is proposed to homogeneously anchor SnO2 nanocrystals on nitrogen/sulfur codoped graphene (NSGS), which serves as an advanced anode material in lithium/sodium-ion batteries (LIBs/SIBs). Benefiting from novel design and specific structure, the optimized NSGS for LIBs displays high initial capacity (2123.9 mAh g(-1) at 0.1 A g(-1)), long-term cycling performance (only 0.8% loss after 500 cycles), and good rate capability (477.4 mAh g(-1) at 5 A g(-1)). In addition, the optimized NSGS for SIBs also delivers high initial capacity (791.7 mAh g(-1) at 0.1 A g(-1)) and high reversible capacity (180.2 mAh g(-1) after 500 cycles at 0.5 A g(-1)). Meanwhile, based on the detailed analysis of phase transition and electrochemical reaction kinetics, the reaction mechanisms of NSGS in LIBs and SIBs as well as the distinction in LIBs/SIBs are clearly articulated. Notably, to further explore the practical application, Li/Na+ full cells are also assembled by coupling the optimized NSGS anode with LiCoO2 and Na3V2(PO4)(3)/C cathodes, respectively.
引用
收藏
页数:10
相关论文