Stable P-harmonic maps between Finsler manifolds

被引:3
|
作者
Li Jintang [1 ]
机构
[1] Xiamen Univ, Dept Math, Xiamen 361005, Fujian, Peoples R China
关键词
Finsler manifold; P-harmonic map; stability; variation formula;
D O I
10.2140/pjm.2008.237.121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We derive the first and second variation formulas for P-harmonic maps between Finsler manifolds, and we prove that there is no nondegenerate stable P-harmonic map between a Riemannian unit sphere S-n for n > P >= 2 and any compact Finsler manifold.
引用
收藏
页码:121 / 135
页数:15
相关论文
共 50 条
  • [31] Φ-Harmonic Maps and Φ-Superstrongly Unstable Manifolds
    Han, Yingbo
    Wei, Shihshu Walter
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (01)
  • [32] A theorem of Liouville type for p-harmonic morphisms
    Choi, G
    Yun, GJ
    GEOMETRIAE DEDICATA, 2003, 101 (01) : 55 - 59
  • [33] A Liouville type theorem for p-harmonic morphisms
    Kang, TH
    KORUS 2003: 7TH KOREA-RUSSIA INTERNATIONAL SYMPOSIUM ON SCIENCE AND TECHNOLOGY, VOL 3, PROCEEDINGS: NATURAL SCIENCE, 2003, : 220 - 222
  • [34] CR-manifolds, harmonic maps and stability
    Gherghe C.
    Ianus S.
    Pastore A.M.
    Journal of Geometry, 2001, 71 (1) : 42 - 53
  • [35] Partial regularity results up to the boundary for harmonic maps into a Finsler manifold
    Tachikawa, Atsushi
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (05): : 1953 - 1970
  • [36] HARMONIC MAPS AND STABILITY ON LORENTZIAN PARA SASAKIAN MANIFOLDS
    Rehman, Najma Abdul
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2022, 23 (02): : 101 - 106
  • [37] Harmonic maps and stability on locally conformal kahler manifolds
    Gherghe, Catalin
    JOURNAL OF GEOMETRY AND PHYSICS, 2013, 70 : 48 - 53
  • [38] Harmonic maps on locally conformal almost cosymplectic manifolds
    Gherghe, Catalin
    Vilcu, Gabriel-Eduard
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024, 26 (09)
  • [39] On the minimality of the p-harmonic map x/∥x∥ for weighted energy
    Bourgoin, Jean-Christophe
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2007, 32 (01) : 1 - 13
  • [40] ON THE BI-P-HARMONIC MAPS AND THE CONFORMAL MAPS
    Ouakkas, Seddik
    Halimi, Abderrazak
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (05): : 1155 - 1168