CU-NET: TOWARDS CONTINUOUS MULTI-CLASS CONTOUR DETECTION FOR RETINAL LAYER SEGMENTATION IN OCT IMAGES

被引:2
作者
Bhattarai, Ashuta [1 ]
Kambhamettu, Chandra [1 ]
Jin, Jing [2 ]
机构
[1] Univ Delaware, Video Image Modeling & Synth VIMS Lab, Newark, DE 19716 USA
[2] Nemours Childrens Hosp, Newark, DE USA
来源
2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2022年
关键词
Contour detection; optical coherence tomography; retinal layer segmentation; OPTICAL COHERENCE TOMOGRAPHY; AUTOMATIC SEGMENTATION; NETWORK;
D O I
10.1109/ICIP46576.2022.9897516
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent deep learning-based contour detection studies show high accuracy in single-class boundary detection problems. However, this performance does not translate well in a multi-class scenario where continuous contours are required. Our research presents CU-Net, a U-Net-based network with residual-net encoders which can produce accurate and uninterrupted contour lines for multiple classes. The critical factor behind this concept is our continuity module, containing an interpolation layer and a novel activation function that converts discrete signals into smooth contours. We find the application of our approach in medical imaging problems like retinal layer segmentation from optical coherence tomography (OCT) scans. We applied our method to an expert annotated OCT dataset of children with sickle-cell disease. To compare with benchmarks, we evaluated our network on DME and HC-MS datasets. We achieved an overall mean absolute distance of 6.48 +/- 2.04 mu M and 1.97 +/- 0.89 mu M, respectively 1.03 and 1.4 times less than the current state-of-the-art.
引用
收藏
页码:3833 / 3837
页数:5
相关论文
共 39 条
[1]  
[Anonymous], 2016, OBJECT CONTOUR DETEC
[2]   Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema [J].
Chiu, Stephanie J. ;
Allingham, Michael J. ;
Mettu, Priyatham S. ;
Cousins, Scott W. ;
Izatt, Joseph A. ;
Farsiu, Sina .
BIOMEDICAL OPTICS EXPRESS, 2015, 6 (04) :1172-1194
[3]   Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation [J].
Chiu, Stephanie J. ;
Li, Xiao T. ;
Nicholas, Peter ;
Toth, Cynthia A. ;
Izatt, Joseph A. ;
Farsiu, Sina .
OPTICS EXPRESS, 2010, 18 (18) :19413-19428
[4]  
Deng R., 2018, Learning to Predict Crisp Boundaries
[5]   DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images [J].
Devalla, Sripad Krishna ;
Renukanand, Prajwal K. ;
Sreedhar, Bharathwaj K. ;
Subramanian, Giridhar ;
Zhang, Liang ;
Perera, Shamira ;
Mari, Jean-Martial ;
Chin, Khai Sing ;
Tun, Tin A. ;
Strouthidis, Nicholas G. ;
Aung, Tin ;
Thiery, Alexandre H. ;
Girard, Michael J. A. .
BIOMEDICAL OPTICS EXPRESS, 2018, 9 (07) :3244-3265
[6]   Optical coherence tomography: An emerging technology for biomedical imaging and optical biopsy [J].
Fujimoto, JG ;
Pitris, C ;
Boppart, SA ;
Brezinski, ME .
NEOPLASIA, 2000, 2 (1-2) :9-25
[7]   Automated detection of retinal layers from OCT spectral-domain images of healthy eyes [J].
Giovinco, Gaspare ;
Savastano, Maria Cristina ;
Ventre, Salvatore ;
Tamburrino, Antonello .
JOURNAL OF MODERN OPTICS, 2015, 62 (21) :1865-1878
[8]   A deep learning framework for segmentation of retinal layers from OCT images [J].
Gopinath, Karthik ;
Rangrej, Samrudhdhi B. ;
Sivaswamy, Jayanthi .
PROCEEDINGS 2017 4TH IAPR ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2017, :888-893
[9]   Effect of patch size and network architecture on a convolutional neural network approach for automatic segmentation of OCT retinal layers [J].
Hamwood, Jared ;
Alonso-Caneiro, David ;
Read, Scott A. ;
Vincent, Stephen J. ;
Collins, Michael J. .
BIOMEDICAL OPTICS EXPRESS, 2018, 9 (07) :3049-3066
[10]  
He J., 2019, Bi-Directional Cascade Network for Perceptual Edge Detection