Saturated control design of a quadrotor with heterogeneous comprehensive learning particle swarm optimization

被引:22
作者
Wang, Jia-Jun [1 ]
Liu, Guang-Yu [1 ]
机构
[1] Hangzhou Dianzi Univ, Sch Automat, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Quadrotor; Saturated control; Cascaded control structure; Heterogeneous comprehensive learning; particle swarm optimization; Spatial trajectory tracking; SLIDING MODE CONTROL; GLOBAL OPTIMIZATION; TRACKING; ATTITUDE; FLIGHT; WIND;
D O I
10.1016/j.swevo.2019.02.008
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel saturated control method for a quadrotor to realize three-dimensional spatial trajectory tracking with heterogeneous comprehensive learning particle swarm optimization (HCLPSO). First, the model of the quadrotor is decomposed into cascaded control structure (CCS) with inner attitude control loop and outer position control loop. Second, the saturated control is deployed to confine the thrust force of the quadrotor in the outer position control loop. Then, the inner attitude reference signals can be generated with the outer position control loop through the cascaded control mode. Third, to alleviate the difficulty of the parameter adjustment, HCLPSO algorithm is applied in the control parameter optimization for the quadrotor. The optimization results of the HCLPSO are compared with that of particle swarm optimization (PSO), comprehensive learning particle swarm optimization (CLPSO), genetic algorithm (GA), and differential evolution (DE). At last, simulation results certify that the spatial trajectory tracking control of the quadrotor can be successfully achieved with the proposed method.
引用
收藏
页码:84 / 96
页数:13
相关论文
共 45 条
[1]   Simple Tracking Controllers for Autonomous VTOL Aircraft With Bounded Inputs [J].
Ailon, Amit .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (03) :737-743
[2]   Model predictive quadrotor control: attitude, altitude and position experimental studies [J].
Alexis, K. ;
Nikolakopoulos, G. ;
Tzes, A. .
IET CONTROL THEORY AND APPLICATIONS, 2012, 6 (12) :1812-1827
[3]   Visual-based quadrotor control by means of fuzzy cognitive maps [J].
Amirkhani, Abdollah ;
Shirzadeh, Masoud ;
Papageorgiou, Elpiniki I. ;
Mosavi, Mohammad R. .
ISA TRANSACTIONS, 2016, 60 :128-142
[4]   Fixed Wing UAV Path Following in Wind With Input Constraints [J].
Beard, Randal W. ;
Ferrin, Jeff ;
Humpherys, Jeffrey .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2014, 22 (06) :2103-2117
[5]   Detection of the power lines in UAV remote sensed images using spectral-spatial methods [J].
Bhola, Rishav ;
Krishna, Nandigam Hari ;
Ramesh, K. N. ;
Senthilnath, J. ;
Anand, Gautham .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2018, 206 :1233-1242
[6]  
Blaschke F., 1972, Siemens Review, P217
[7]   Robust Landing and Sliding Maneuver Hybrid Controller for a Quadrotor Vehicle [J].
Cabecinhas, David ;
Naldi, Roberto ;
Silvestre, Carlos ;
Cunha, Rita ;
Marconi, Lorenzo .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2016, 24 (02) :400-412
[8]   An aerial robot for rice farm quality inspection with type-2 fuzzy neural networks tuned by particle swarm optimization-sliding mode control hybrid algorithm [J].
Camci, Efe ;
Kripalani, Devesh Raju ;
Ma, Linlu ;
Kayacan, Erdal ;
Khanesar, Mojtaba Ahmadieh .
SWARM AND EVOLUTIONARY COMPUTATION, 2018, 41 :1-8
[9]   Inner-Outer Loop Control for Quadrotor UAVs With Input and State Constraints [J].
Cao, Ning ;
Lynch, Alan F. .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2016, 24 (05) :1797-1804
[10]   Mini Quadrotor UAV: Design and Experiment [J].
Capello, Elisa ;
Scola, Alessandro ;
Guglieri, Giorgio ;
Quagliotti, Fulvia .
JOURNAL OF AEROSPACE ENGINEERING, 2012, 25 (04) :559-573