Singular Perturbation of Simple Steklov Eigenvalues

被引:0
|
作者
Gryshchuk, Serhii [1 ]
Lanza de Cristoforis, Massimo [1 ]
机构
[1] Univ Padua, Dipartimento Matemat, Via Trieste 63, I-35121 Padua, Italy
关键词
Steklov eigenvalues and eigenfunctions; singularly perturbed domain; Laplace operator; real analytic continuation in Banach space; DOMAIN;
D O I
10.1063/1.4756231
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let I-o be a bounded open domain of R-n. Let nu(Io) denote the outward unit normal to partial derivative I-o. We assume that the Steklov problem Delta u = 0 in I-o, partial derivative u partial derivative(nu Io) = lambda u on partial derivative I-o has a simple eigenvalue (lambda) over tilde. Then we consider an annular domain A(epsilon) obtained by removing from I-o a small cavity of size epsilon > 0, and we show that under proper assumptions there exists a real valued real analytic function (lambda) over cap(.,.) defined in an open neighborhood of (0,0) in R-2 and such that (lambda) over cap(epsilon, delta(2,n)epsilon log epsilon) is a simple eigenvalue for the Steklov problem Delta u = 0 in A(epsilon), partial derivative u/partial derivative nu(A(epsilon)) = lambda u on partial derivative A(epsilon) for all epsilon > 0 small enough, and such that (lambda) over cap (0,0) = (lambda) over tilde. Here nu(A(epsilon)) denotes the outward unit normal to partial derivative A(epsilon), and delta(2,2) equivalent to 1 and delta(2,n) equivalent to 0 if n >= 3. Then related statements have been proved for corresponding eigenfunctions.
引用
收藏
页码:700 / 703
页数:4
相关论文
共 50 条
  • [31] Eigenfunction expansions for a singular quasidifferential operator with simple eigenvalues
    A. V. Makhnei
    R. M. Tatsii
    Differential Equations, 2006, 42 : 193 - 201
  • [32] Monotonicity of Steklov eigenvalues on graphs and applications
    Chengjie Yu
    Yingtao Yu
    Calculus of Variations and Partial Differential Equations, 2024, 63
  • [33] UPPER BOUNDS FOR STEKLOV EIGENVALUES ON SURFACES
    Girouard, Alexandre
    Polterovich, Iosif
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2012, 19 : 77 - 85
  • [34] Simple eigenvalues for the Steklov problem in a domain with a small hole. A functional analytic approach
    Gryshchuk, Serhii
    Lanza de Cristoforis, Massimo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (12) : 1755 - 1771
  • [35] Optimization of Steklov-Neumann eigenvalues
    Ammaria, Habib
    Imeri, Kthim
    Nigam, Nilima
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 406
  • [36] A comparison between Neumann and Steklov eigenvalues
    Henrot, Antoine
    Michetti, Marco
    JOURNAL OF SPECTRAL THEORY, 2022, 12 (04) : 1405 - 1442
  • [37] Upper bounds for the Steklov eigenvalues on trees
    He, Zunwu
    Hua, Bobo
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (03)
  • [38] RELATIVE PERTURBATION ANALYSIS FOR EIGENVALUES AND SINGULAR VALUES OF TOTALLY NONPOSITIVE MATRICES
    Huang, Rong
    Chu, Delin
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (02) : 476 - 495
  • [39] Estimates for eigenvalues of the Neumann and Steklov problems
    Du, Feng
    Mao, Jing
    Wang, Qiaoling
    Xia, Changyu
    Zhao, Yan
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [40] Higher Dimensional Surgery and Steklov Eigenvalues
    Hong, Han
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) : 11931 - 11951